Impact of Grafting Density on the Assembly and Mechanical Properties of Self-Assembled Metal–Organic Framework Monolayers

化学 单层 嫁接 自组装 金属 纳米技术 高分子化学 化学工程 有机化学 聚合物 生物化学 材料科学 工程类
作者
Min‐Jung Kang,Po-An Lin,Jordan A. Bunch,Darren J. Lipomi,Gaurav Arya,Seth M. Cohen
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c17748
摘要

Polymer-grafted metal-organic frameworks (MOFs) can be used to form free-standing self-assembled MOF monolayers (SAMMs). Polymer chains can be introduced onto MOF surfaces through either the ligands or metal nodes using both grafting-to and grafting-from approaches. However, controlling the grafting density of polymer-grafted MOFs has not yet been achieved, because a means to control the density of grafting sites on the MOF surface has not been developed. In this study, the grafting density of polymer-grafted UiO-66 (UiO = University of Oslo) was controlled by functionalizing a portion of the Zr(IV) secondary building units (SBUs) on a UiO-66 surface with a so-called blocking agent. The remaining sites on the UiO-66 SBUs were functionalized with polymerization initiation groups, and polymers were grown from these sites to obtain particles with variable grafting densities and chain lengths that form SAMMs at an air-water interface. Even under conditions of low grafting density, these materials retain the ability to form SAMMs and their free-standing ability. Changes in particle arrangement within the monolayers were investigated using SEM imaging, and the toughness of the monolayers was evaluated using a film-on-water (FOW) method. Furthermore, coarse-grained molecular dynamics simulations were carried out to elucidate the morphology and mechanical properties of the monolayers. Findings from both experiments and simulations indicate that the toughness of SAMMs is more heavily influenced by the chain length of the grafted polymers than by the overall polymer content in the composite.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GD发布了新的文献求助10
刚刚
刚刚
今后应助青椒采纳,获得10
1秒前
1秒前
1秒前
研友_VZG7GZ应助颜颜采纳,获得10
2秒前
Harry完成签到,获得积分10
2秒前
songvv发布了新的文献求助10
4秒前
d22110652发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
7秒前
7秒前
7秒前
SXYYXS发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
完美世界应助Kayson采纳,获得10
10秒前
10秒前
towanda发布了新的文献求助10
10秒前
zhang完成签到,获得积分10
10秒前
科研通AI5应助小吴采纳,获得10
10秒前
10秒前
希望天下0贩的0应助mito采纳,获得10
10秒前
OK发布了新的文献求助20
11秒前
Jasper应助那位大人采纳,获得10
11秒前
11秒前
小蘑菇发布了新的文献求助10
11秒前
ji完成签到 ,获得积分10
12秒前
慕青应助莫言荨采纳,获得10
12秒前
年轻的寄风完成签到,获得积分10
13秒前
13秒前
14秒前
zpl发布了新的文献求助10
14秒前
Eatanicecube完成签到,获得积分10
14秒前
充电宝应助夏晴采纳,获得10
15秒前
WANG.发布了新的文献求助10
15秒前
Louki发布了新的文献求助10
15秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475278
求助须知:如何正确求助?哪些是违规求助? 3067370
关于积分的说明 9103709
捐赠科研通 2758761
什么是DOI,文献DOI怎么找? 1513790
邀请新用户注册赠送积分活动 699798
科研通“疑难数据库(出版商)”最低求助积分说明 699160