Urea Chelation of I+ for High-Voltage Aqueous Zinc–Iodine Batteries

水溶液 化学 电化学 电解质 歧化 无机化学 尿素 螯合作用 电极 物理化学 有机化学 催化作用
作者
Cuicui Li,Haocheng Li,Xiuyun Ren,Liang Hu,Jiaojiao Deng,Jinhan Mo,Xiaoqi Sun,Guohua Chen,Xiaoliang Yu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (2): 2633-2640 被引量:47
标识
DOI:10.1021/acsnano.4c14451
摘要

The multielectron conversion electrochemistry of I-/I0/I+ enables high specific capacity and voltage in zinc-iodine batteries. Unfortunately, the I+ ions are thermodynamically unstable and are highly susceptible to hydrolysis. Current endeavors primarily focus on exploring interhalogen chemistry to activate the I0/I+ couple. However, the practical working voltage is below the theoretical level. In this study, the I0/I+ redox couple is fully activated, and I+ is efficiently stabilized by a chelation agent of cost-effective urea in the conventional aqueous electrolyte. A record-high plateau voltage of 1.8 V vs Zn/Zn2+ has been realized. Theoretical calculations combined with spectroscopy studies and electrochemical tests reveal that the coordination between the electron-deficient I+ and the electron-rich O and N atoms in urea molecules is thermodynamically favorable for I0/I+ conversion and inhibits the self-disproportionation of I+, which in turn promotes rapid kinetics and excellent reversibility of I0/I+. Moreover, urea decreases the water activity in the electrolyte by forming hydrogen bonds to further suppress the hydrolysis of I+. Accordingly, a high specific capacity of 419 mAh g-1 is delivered at 1C, and 147 mAh g-1 capacity is retained after 10,000 cycles at 5C. This work offers effective insights into formulating halogen-free electrolytes for high-performance aqueous zinc-iodine batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助熊研研采纳,获得30
刚刚
刚刚
刚刚
Jasper应助庾稀采纳,获得10
刚刚
1秒前
DavidSun发布了新的文献求助10
1秒前
11111发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
hrpppp发布了新的文献求助50
1秒前
2秒前
四辈完成签到,获得积分10
2秒前
orixero应助六尺巷采纳,获得10
2秒前
枫名完成签到 ,获得积分10
3秒前
3秒前
20074010181发布了新的文献求助10
4秒前
4秒前
牂牂发布了新的文献求助10
4秒前
无极微光应助科研通管家采纳,获得20
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
华仔应助高斯采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
5秒前
y741应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
完美世界应助诚心的以寒采纳,获得10
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
Lily完成签到,获得积分10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
Aki_27发布了新的文献求助10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得30
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488