已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SchNet_IIA: Potential Energy Surface Fitting by Interatomic Interactions Attention Based on Transfer Learning Analysis

曲面(拓扑) 能量(信号处理) 原子间势 化学物理 材料科学 统计物理学 计算机科学 化学 计算化学 物理 分子动力学 数学 量子力学 几何学
作者
Kai‐Le Jiang,Huai‐Qian Wang,Huifang Li,Shuwan Pan,Hao Zheng,Yong‐Hang Zhang,Jiaming Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01473
摘要

Machine learning methods for fitting potential energy surfaces and molecular dynamics simulations are becoming increasingly popular due to their potentially high accuracy and savings in computational resources. However, existing application models often rely on basic architectures like artificial neural networks (ANNs) and multilayer perceptron (MLP), lagging behind cutting-edge technologies in the machine learning domain. Furthermore, the complexity of current machine learning frameworks leads to reduced interpretability and challenges for improvement. Herein, we developed a model analysis method based on the feature-representation-transfer approach to directly perform causal analysis on the model. The internal action characteristics of the SchNet framework were successfully analyzed by constructing different source tasks and we proposed interatomic interactions attention for the characterization of doped clusters. The accuracy was enhanced by 0.015 eV/atom compared to the original model. The ability to capture atomic environment characteristics was significantly improved. The activation function was smoothed resulting in a 23.47% increase in the convergence speed. Our SchNet_IIA model demonstrates superior performance in capturing interatomic interactions. Our present work is of distinctive value as it presents a novel transfer learning analysis method with the potential to evolve into a generalized model analysis approach, providing new perspectives and solutions for the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AM发布了新的文献求助10
刚刚
zzw发布了新的文献求助200
1秒前
李李发布了新的文献求助10
1秒前
菠萝完成签到 ,获得积分10
3秒前
卢文静发布了新的文献求助10
4秒前
4秒前
YifanWang给chenshi0515的求助进行了留言
5秒前
11秒前
小蘑菇应助二两采纳,获得10
13秒前
13秒前
Sisi完成签到,获得积分20
15秒前
星辰大海应助维夏十一采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
ly应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
18秒前
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
20秒前
21秒前
22秒前
黑煤球完成签到,获得积分10
22秒前
23秒前
独特凝冬完成签到,获得积分20
24秒前
英姑应助wangchu采纳,获得10
24秒前
二两发布了新的文献求助10
25秒前
25秒前
sky发布了新的文献求助20
26秒前
传奇3应助Irene采纳,获得10
26秒前
维夏十一发布了新的文献求助10
28秒前
三木大叔发布了新的文献求助10
28秒前
qcy72发布了新的文献求助10
29秒前
29秒前
碧蓝觅山发布了新的文献求助10
33秒前
文茵发布了新的文献求助10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307142
求助须知:如何正确求助?哪些是违规求助? 2940917
关于积分的说明 8499435
捐赠科研通 2615110
什么是DOI,文献DOI怎么找? 1428672
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648355