Specifying the Associations between PM2.5 Constituents and Gastrointestinal Cancer Incidence: Findings from a Prospective Cohort Study in Beijing, China

置信区间 入射(几何) 危险系数 比例危险模型 医学 癌症 人口学 内科学 数学 社会学 几何学
作者
Lei Yang,Ning Kang,Ning Wang,Xi Zhang,Shuo Liu,Huichao Li,Lili Cao,Tao Xue,Ziyu Li,Jiafu Ji,Tong Zhu
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c10986
摘要

This study aimed to test the association between PM2.5 and the incidence of gastrointestinal (GI) cancer, and further to detect the primary constituents on this association. A sum of 142,982 participants without GI cancer at baseline were derived from the National Urban Cancer Screening Program in Beijing (2013–2019). The 5 year averaged concentrations of PM2.5 mass and its five constituents, namely, black carbon (BC), ammonium (NH4+), nitrate (NO3–), organic matter (OM), and inorganic sulfate (SO42–), were estimated by using a hybrid machine learning model. The Cox proportional hazard model with fixed effects was used to explore the associations between PM2.5 mass and its constituents with the incidence of GI cancer. The double-exposure linear model, the mixture exposure model of quantile-based g-computation, and an explainable machine learning model were utilized to evaluate the importance of different PM2.5 constituents. Long-term exposure to PM2.5 mass and its constituents was linearly associated with GI cancer; the estimated hazard ratio and 95% confidence interval (95% CI) of per standard deviation increment were 1.367 (95% CI: 1.257 to 1.487) for PM2.5 mass, 1.434 (95% CI: 1.307 to 1.574) for BC, 1.255 (95% CI: 1.169 to 1.349) for NH4+, 1.217 (95% CI: 1.139 to 1.301) for NO3–, 1.410 (95% CI: 1.287 to 1.546) for OM, and 1.410 (95% CI: 1.288 to 1.542) for SO42–. By using multiple methods, results indicated that SO42– and BC were the most important constituents. Results indicated that long-term exposure to PM2.5 was associated with a high incidence of GI cancer, and BC and SO42– were robustly identified as the primary constituents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助奶咖兔兔采纳,获得10
刚刚
wdf完成签到,获得积分10
1秒前
子车茗应助优优采纳,获得25
1秒前
要开心发布了新的文献求助10
2秒前
在水一方应助清脆听露采纳,获得10
2秒前
wyblobin完成签到,获得积分10
2秒前
2秒前
虚心抽屉应助细腻依云采纳,获得10
3秒前
Wayne完成签到,获得积分10
3秒前
4秒前
十一应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
cocolu应助科研通管家采纳,获得10
5秒前
sissiarno应助科研通管家采纳,获得30
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
Potato应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
ruyinni应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
十一应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
重重重飞完成签到 ,获得积分10
6秒前
YGYANG发布了新的文献求助10
9秒前
10秒前
10秒前
李健应助红箭烟雨采纳,获得30
11秒前
科研通AI2S应助要开心采纳,获得10
11秒前
12秒前
任梓宁发布了新的文献求助10
13秒前
李可心完成签到 ,获得积分10
13秒前
灵巧雨寒发布了新的文献求助10
13秒前
小马甲应助安静的白zz采纳,获得10
13秒前
Glacier发布了新的文献求助20
13秒前
梅仑西西发布了新的文献求助10
14秒前
15秒前
少少发布了新的文献求助10
15秒前
Hello应助enchanted采纳,获得10
15秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313875
求助须知:如何正确求助?哪些是违规求助? 2946190
关于积分的说明 8528864
捐赠科研通 2621756
什么是DOI,文献DOI怎么找? 1434075
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650718