Comparing cooperative geometric puzzle solving in ants versus humans

认知 计算机科学 可扩展性 不相交集 集体智慧 抓住 认知心理学 人工智能 人机交互 心理学 数学 组合数学 数据库 神经科学 程序设计语言
作者
Tabea Dreyer,Amir Haluts,Amos Korman,Nir S. Gov,Ehud Fonio,Ofer Feinerman
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (1)
标识
DOI:10.1073/pnas.2414274121
摘要

Biological ensembles use collective intelligence to tackle challenges together, but suboptimal coordination can undermine the effectiveness of group cognition. Testing whether collective cognition exceeds that of the individual is often impractical since different organizational scales tend to face disjoint problems. One exception is the problem of navigating large loads through complex environments and toward a given target. People and ants stand out in their ability to efficiently perform this task not just individually but also as a group. This provides a rare opportunity to empirically compare problem-solving skills and cognitive traits across species and group sizes. Here, we challenge people and ants with the same “piano-movers” load maneuvering puzzle and show that while ants perform more efficiently in larger groups, the opposite is true for humans. We find that although individual ants cannot grasp the global nature of the puzzle, their collective motion translates into emergent cognitive skills. They encode short-term memory in their internally ordered state and this allows for enhanced group performance. People comprehend the puzzle in a way that allows them to explore a reduced search space and, on average, outperform ants. However, when communication is restricted, groups of people resort to the most obvious maneuvers to facilitate consensus. This is reminiscent of ant behavior, and negatively impacts their performance. Our results exemplify how simple minds can easily enjoy scalability while complex brains require extensive communication to cooperate efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿美发布了新的文献求助30
1秒前
1秒前
Jocelyn7完成签到,获得积分10
2秒前
wanyanjin应助yaoyao采纳,获得10
3秒前
Stephanie完成签到,获得积分20
3秒前
C_Cppp发布了新的文献求助10
3秒前
大抽是谁完成签到,获得积分10
3秒前
4秒前
Q0应助Hangerli采纳,获得20
4秒前
4秒前
黎土土发布了新的文献求助50
6秒前
6秒前
大抽是谁发布了新的文献求助10
7秒前
7秒前
李健的小迷弟应助公茂源采纳,获得30
7秒前
失眠的凝雁完成签到,获得积分10
7秒前
科研通AI5应助赖道之采纳,获得10
7秒前
Menand完成签到,获得积分10
8秒前
学者发布了新的文献求助10
8秒前
清新完成签到,获得积分10
8秒前
陶弈衡完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
愉快盼曼发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
nemo发布了新的文献求助10
14秒前
学术蝗虫完成签到,获得积分10
14秒前
justin完成签到,获得积分10
15秒前
西瓜啵啵完成签到,获得积分10
17秒前
小周完成签到,获得积分10
17秒前
Louki完成签到 ,获得积分10
17秒前
温暖的颜演完成签到 ,获得积分10
18秒前
yudandan@CJLU发布了新的文献求助10
19秒前
科研小民工应助_呱_采纳,获得50
19秒前
愉快盼曼完成签到,获得积分20
19秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
20秒前
123完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808