Artificial neural networks and phenomenological degradation models for fatigue damage tracking and life prediction in laser-induced graphene interlayered fiberglass composites

材料科学 复合材料 刚度 现象学模型 复合数 压力(语言学) 结构工程 工程类 数学 语言学 统计 哲学
作者
Boyang Chen,Adam Childress,Jalal Nasser,LoriAnne Groo,Henry A. Sodano
标识
DOI:10.1117/12.2658062
摘要

Fiber-reinforced polymer matrix composites deteriorate mechanically due to fatigue degradation during cyclic stress. The progressive decrease in elastic stiffness over fatigue life is well-established and investigated, yet many dynamic engineering systems that use composite materials are subjected to random and unexpected loading circumstances, making it impossible to continually monitor such structural changes. LIG can detect strain and damage in fiberglass composites under quasi-static and dynamic loads. ANNs and traditional phenomenological models may assess damage development and fatigue life utilizing LIG interlayered fiberglass composites’ piezoresistivity. Passive experiments monitor LIG interlayered fiberglass composite elastic stiffness and electrical resistance during tension–tension fatigue stress. Electrical resistance-based damage metrics follow similar trends to elastic stiffness-based parameters and may accurately depict damage development in LIG interlayered fiberglass composites over fatigue life. In specimen-to-specimen and cycle-to-cycle schemes, trained ANNs and phenomenological degradation and accumulation models predict fiberglass composite fatigue life and damage state. In a specimen-to-specimen scheme, a two-layer Bayesian regularized ANN with 40 neurons per layer beats phenomenological degradation models by at least 60%, with R2 values more than 0.98 and RMSE values less than 10−3 . A two-layer Bayesian regularized ANN with 25 neurons per layer exhibits R2 values more than 0.99 and RMSE values less than 2×10−4 when more than 30% of the original data is used in a cycle-to-cycle method. Piezoresistive LIG interlayers and ANNs can correctly and constantly predict fatigue life in multifunctional composite structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮的以莲完成签到,获得积分10
刚刚
杨洋发布了新的文献求助10
刚刚
小小铱发布了新的文献求助10
1秒前
完美世界应助王玄琳采纳,获得10
1秒前
zhengzengpeng发布了新的文献求助10
1秒前
2秒前
2秒前
fz1完成签到 ,获得积分10
2秒前
3秒前
张叁完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
热心观众发布了新的文献求助10
4秒前
柏林寒冬应助叶白山采纳,获得10
4秒前
可爱的函函应助赵本山采纳,获得10
4秒前
你猜发布了新的文献求助10
4秒前
饱满的乘云完成签到,获得积分20
4秒前
咿咿呀呀发布了新的文献求助20
4秒前
猪猪hero发布了新的文献求助10
4秒前
5秒前
ZWZ驳回了wsy应助
5秒前
淳于文昊发布了新的文献求助10
5秒前
Kiki发布了新的文献求助10
6秒前
6秒前
扁桃体发布了新的文献求助10
6秒前
6秒前
6秒前
SYLH应助秋风暖暖采纳,获得10
7秒前
英俊的铭应助sc采纳,获得10
7秒前
怕孤独的根号三完成签到,获得积分10
7秒前
二连完成签到 ,获得积分10
7秒前
8秒前
小蚊子发布了新的文献求助10
8秒前
杨洋完成签到,获得积分20
8秒前
可靠的0完成签到,获得积分10
8秒前
万能图书馆应助yyl采纳,获得10
8秒前
彭于彦祖应助jagger采纳,获得30
8秒前
8秒前
笙惗雪完成签到,获得积分10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974602
求助须知:如何正确求助?哪些是违规求助? 3519026
关于积分的说明 11196787
捐赠科研通 3255127
什么是DOI,文献DOI怎么找? 1797693
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130