Artificial neural networks and phenomenological degradation models for fatigue damage tracking and life prediction in laser-induced graphene interlayered fiberglass composites

材料科学 复合材料 刚度 现象学模型 复合数 压力(语言学) 结构工程 工程类 数学 语言学 统计 哲学
作者
Boyang Chen,Adam Childress,Jalal Nasser,LoriAnne Groo,Henry A. Sodano
标识
DOI:10.1117/12.2658062
摘要

Fiber-reinforced polymer matrix composites deteriorate mechanically due to fatigue degradation during cyclic stress. The progressive decrease in elastic stiffness over fatigue life is well-established and investigated, yet many dynamic engineering systems that use composite materials are subjected to random and unexpected loading circumstances, making it impossible to continually monitor such structural changes. LIG can detect strain and damage in fiberglass composites under quasi-static and dynamic loads. ANNs and traditional phenomenological models may assess damage development and fatigue life utilizing LIG interlayered fiberglass composites’ piezoresistivity. Passive experiments monitor LIG interlayered fiberglass composite elastic stiffness and electrical resistance during tension–tension fatigue stress. Electrical resistance-based damage metrics follow similar trends to elastic stiffness-based parameters and may accurately depict damage development in LIG interlayered fiberglass composites over fatigue life. In specimen-to-specimen and cycle-to-cycle schemes, trained ANNs and phenomenological degradation and accumulation models predict fiberglass composite fatigue life and damage state. In a specimen-to-specimen scheme, a two-layer Bayesian regularized ANN with 40 neurons per layer beats phenomenological degradation models by at least 60%, with R2 values more than 0.98 and RMSE values less than 10−3 . A two-layer Bayesian regularized ANN with 25 neurons per layer exhibits R2 values more than 0.99 and RMSE values less than 2×10−4 when more than 30% of the original data is used in a cycle-to-cycle method. Piezoresistive LIG interlayers and ANNs can correctly and constantly predict fatigue life in multifunctional composite structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰发布了新的文献求助10
1秒前
于芋菊完成签到,获得积分10
1秒前
XINGXING完成签到 ,获得积分10
3秒前
ylc发布了新的文献求助10
3秒前
5秒前
5秒前
wZx发布了新的文献求助10
5秒前
5秒前
风息完成签到,获得积分10
5秒前
5秒前
Nico完成签到,获得积分20
6秒前
李健的小迷弟应助星辰采纳,获得10
10秒前
JohnLemon发布了新的文献求助10
11秒前
11秒前
英勇的水壶完成签到,获得积分20
11秒前
13秒前
15秒前
乐乐应助漂亮的人生采纳,获得10
15秒前
云海发布了新的文献求助10
16秒前
隐形曼青应助简单如容采纳,获得10
16秒前
18秒前
19秒前
ANNI发布了新的文献求助10
19秒前
19秒前
科研通AI2S应助千年一梦采纳,获得10
20秒前
72完成签到 ,获得积分10
20秒前
insissst完成签到,获得积分10
21秒前
Maosha完成签到,获得积分20
21秒前
Metbutterly完成签到,获得积分10
22秒前
韩尚宁发布了新的文献求助20
23秒前
城123发布了新的文献求助10
25秒前
墨1234完成签到,获得积分10
26秒前
樊香彤完成签到,获得积分10
27秒前
丘比特应助3424923462采纳,获得10
29秒前
在水一方应助HDD采纳,获得10
29秒前
seven完成签到,获得积分10
29秒前
ding应助小白采纳,获得10
30秒前
30秒前
30秒前
wZx完成签到,获得积分20
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163348
求助须知:如何正确求助?哪些是违规求助? 2814206
关于积分的说明 7903775
捐赠科研通 2473774
什么是DOI,文献DOI怎么找? 1317050
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187