亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study

射血分数 心力衰竭 医学 逻辑回归 随机森林 机器学习 人工智能 梯度升压 人工神经网络 内科学 算法 诊断代码 急诊医学 心脏病学 计算机科学 人口 环境卫生
作者
Boshu Ru,Xi Tan,Yu Liu,Kartik Kannapur,Dheepan Ramanan,Garin Kessler,Dominik Lautsch,Gregg C. Fonarow
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:7: e41775-e41775 被引量:4
标识
DOI:10.2196/41775
摘要

Heart failure (HF) is highly prevalent in the United States. Approximately one-third to one-half of HF cases are categorized as HF with reduced ejection fraction (HFrEF). Patients with HFrEF are at risk of worsening HF, have a high risk of adverse outcomes, and experience higher health care use and costs. Therefore, it is crucial to identify patients with HFrEF who are at high risk of subsequent events after HF hospitalization.Machine learning (ML) has been used to predict HF-related outcomes. The objective of this study was to compare different ML prediction models and feature construction methods to predict 30-, 90-, and 365-day hospital readmissions and worsening HF events (WHFEs).We used the Veradigm PINNACLE outpatient registry linked to Symphony Health's Integrated Dataverse data from July 1, 2013, to September 30, 2017. Adults with a confirmed diagnosis of HFrEF and HF-related hospitalization were included. WHFEs were defined as HF-related hospitalizations or outpatient intravenous diuretic use within 1 year of the first HF hospitalization. We used different approaches to construct ML features from clinical codes, including frequencies of clinical classification software (CCS) categories, Bidirectional Encoder Representations From Transformers (BERT) trained with CCS sequences (BERT + CCS), BERT trained on raw clinical codes (BERT + raw), and prespecified features based on clinical knowledge. A multilayer perceptron neural network, extreme gradient boosting (XGBoost), random forest, and logistic regression prediction models were applied and compared.A total of 30,687 adult patients with HFrEF were included in the analysis; 11.41% (3184/27,917) of adults experienced a hospital readmission within 30 days of their first HF hospitalization, and nearly half (9231/21,562, 42.81%) of the patients experienced at least 1 WHFE within 1 year after HF hospitalization. The prediction models and feature combinations with the best area under the receiver operating characteristic curve (AUC) for each outcome were XGBoost with CCS frequency (AUC=0.595) for 30-day readmission, random forest with CCS frequency (AUC=0.630) for 90-day readmission, XGBoost with CCS frequency (AUC=0.649) for 365-day readmission, and XGBoost with CCS frequency (AUC=0.640) for WHFEs. Our ML models could discriminate between readmission and WHFE among patients with HFrEF. Our model performance was mediocre, especially for the 30-day readmission events, most likely owing to limitations of the data, including an imbalance between positive and negative cases and high missing rates of many clinical variables and outcome definitions.We predicted readmissions and WHFEs after HF hospitalizations in patients with HFrEF. Features identified by data-driven approaches may be comparable with those identified by clinical domain knowledge. Future work may be warranted to validate and improve the models using more longitudinal electronic health records that are complete, are comprehensive, and have a longer follow-up time.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
zhang发布了新的文献求助10
6秒前
11秒前
17秒前
SciGPT应助璐璐baby采纳,获得10
21秒前
1分钟前
sfwrbh发布了新的文献求助10
1分钟前
璐璐baby发布了新的文献求助10
1分钟前
CodeCraft应助sfwrbh采纳,获得10
1分钟前
等待的音响应助sfwrbh采纳,获得10
1分钟前
lmm完成签到 ,获得积分10
1分钟前
1分钟前
sfwrbh完成签到,获得积分20
1分钟前
lmgj发布了新的文献求助10
2分钟前
灵巧的大开完成签到,获得积分10
2分钟前
Jasper应助mmyhn采纳,获得10
2分钟前
在水一方应助lmgj采纳,获得10
2分钟前
顾矜应助lmgj采纳,获得10
2分钟前
上官若男应助lmgj采纳,获得10
2分钟前
华仔应助大方仙人掌采纳,获得10
2分钟前
爆米花应助灵巧的大开采纳,获得10
2分钟前
ASHhan111完成签到,获得积分10
2分钟前
科研通AI2S应助toto采纳,获得10
2分钟前
2分钟前
2分钟前
龙行天下完成签到 ,获得积分10
3分钟前
deswin完成签到 ,获得积分10
3分钟前
情怀应助羽宇采纳,获得10
3分钟前
111完成签到 ,获得积分10
3分钟前
NattyPoe应助科研通管家采纳,获得10
3分钟前
万能图书馆应助hongping采纳,获得10
4分钟前
搜集达人应助ceeray23采纳,获得20
4分钟前
4分钟前
hongping发布了新的文献求助10
4分钟前
天天快乐应助浮生采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
浮生发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875841
求助须知:如何正确求助?哪些是违规求助? 6521910
关于积分的说明 15677729
捐赠科研通 4993951
什么是DOI,文献DOI怎么找? 2691705
邀请新用户注册赠送积分活动 1633882
关于科研通互助平台的介绍 1591555