Machine learning application in forecasting tire wear particles emission in China under different potential socioeconomic and climate scenarios with tire microplastics context

微塑料 环境科学 背景(考古学) 卷积神经网络 中国 环境工程 比例(比率) 社会经济地位 环境经济学 计算机科学 人工智能 地理 生态学 人口 人口学 地图学 考古 社会学 经济 生物
作者
Xinyi Zhou,Zhuanxi Luo,Haiming Wang,Yinchai Luo,Ruilian Yu,Shu‐Feng Zhou,Zhenhong Wang,Gongren Hu,Baoshan Xing
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:441: 129878-129878 被引量:18
标识
DOI:10.1016/j.jhazmat.2022.129878
摘要

Little information is available on different contribution of TMPs from tire wear particles (TWPs), recycled tire crumbs (RTCs) and tire repair-polished Debris (TRDs) in the environment at national scale and their potential tendency. In this study, the TWPs were predicted using machine learning method of CNN (Convolutional Neural Networks) algorithms under different potential socioeconomic and climate scenarios based on the estimation of TMPs in China. Results showed that TWPs emission exhibited the most important part of TMPs, followed by RTCs and TRDs in China. The three mentioned tire microplastics largely distributed in Chinese coastal provinces. After machine learning applied in CNN using the dataset of estimated emission of TWPs from 2008 to 2018, the express delivery volume and education funding at the current increased rate would not have significant impacts on TWPs emissions; Additionally, TWPs emissions were also sensitive to changes of economic and transportation development; Low temperature conditions would further promote TWPs emissions. Accordingly, the rational development of logistics and green economy, the equilibrium improvement of education quality, and the increase of public traffic with new energy would be helpful to mitigate TWPs emissions. The obtained findings can enhance the understanding TMPs emission at particular scale and their corresponding precise management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助sxyyy采纳,获得10
1秒前
小蘑菇应助linxi采纳,获得30
2秒前
田様应助222采纳,获得10
2秒前
凉面完成签到 ,获得积分10
2秒前
文献求助完成签到,获得积分10
3秒前
传奇3应助李翎采纳,获得10
3秒前
3秒前
4秒前
4秒前
99668完成签到,获得积分10
5秒前
asdadadad发布了新的文献求助10
6秒前
哈哈哈完成签到,获得积分20
6秒前
zzz完成签到,获得积分10
6秒前
6秒前
6秒前
研友_8YoVDn完成签到,获得积分10
7秒前
小洪包发布了新的文献求助10
9秒前
雪流星发布了新的文献求助10
10秒前
10秒前
赘婿应助zeng采纳,获得10
11秒前
左左发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
13秒前
wss发布了新的文献求助10
14秒前
找北ing完成签到 ,获得积分10
14秒前
深情安青应助nnnnnn采纳,获得10
14秒前
曲奇饼干发布了新的文献求助10
14秒前
顺心裙子完成签到,获得积分10
14秒前
buyuren完成签到,获得积分10
15秒前
痴情的萃发布了新的文献求助10
16秒前
嗯哼应助KingLancet采纳,获得20
16秒前
完美世界应助牟白容采纳,获得10
17秒前
17秒前
liu完成签到 ,获得积分10
17秒前
17秒前
18秒前
追寻清发布了新的文献求助10
18秒前
土豆金完成签到,获得积分20
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905