Bias correction based on weighted likelihood for conditional estimation of subgroup effects in randomized clinical trials

随机对照试验 子群分析 推论 截断(统计) 统计 数学 临床试验 条件概率分布 医学 置信区间 内科学 计算机科学 人工智能
作者
Kiichiro Toyoizumi,Shigeyuki Matsui
出处
期刊:Statistics in Medicine [Wiley]
卷期号:41 (26): 5276-5289 被引量:1
标识
DOI:10.1002/sim.9567
摘要

Currently, many confirmatory randomized clinical trials (RCTs) with predictive markers have taken the all‐comers approach because of the difficulty in developing predictive markers that are biologically compelling enough to apply the enrichment approach to restrict the patient population to a marker‐defined subgroup. However, such a RCT with weak marker credentials can conclude that the new treatment is efficacious only in the subgroup, especially when the primary analysis demonstrates some treatment efficacy in the subgroup, but the overall treatment efficacy is not significant under a control of study‐wise alpha rate. In this article, we consider conditional estimation of subgroup treatment effects, given the negative result in testing the overall treatment efficacy in the trial. To address the problem of unstable estimation due to the truncation in the distribution of the test statistic on overall treatment efficacy, we propose a new approach based on a weighted likelihood for the truncated distribution. The weighted likelihood can be derived by invoking a randomized test with a smooth critical function for the overall test. Our approach allows for point and interval estimations of the conditional effects consistently based on the standard maximum likelihood inference. Numerical evaluations, including simulations and application to real clinical trials, and guidelines for implementing our methods with R‐codes, are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助zwj采纳,获得10
1秒前
生动路人应助不动脑筋采纳,获得10
2秒前
2秒前
3秒前
LZAAA完成签到,获得积分10
3秒前
4秒前
11发布了新的文献求助10
5秒前
5秒前
hhhblabla应助欣喜的成败采纳,获得20
5秒前
大方谷梦完成签到 ,获得积分10
6秒前
Listen发布了新的文献求助10
6秒前
神兽下山发布了新的文献求助10
8秒前
九龙飞翔完成签到,获得积分10
8秒前
cxy完成签到,获得积分10
10秒前
Bryan应助旋律采纳,获得10
10秒前
10秒前
微笑发布了新的文献求助10
11秒前
11秒前
JeromineJade发布了新的文献求助10
11秒前
wzx发布了新的文献求助10
12秒前
HarryChan应助蝈蝈采纳,获得10
12秒前
材1完成签到 ,获得积分10
15秒前
所所应助思维隋采纳,获得10
16秒前
阿弥陀佛完成签到,获得积分10
16秒前
默默发布了新的文献求助20
17秒前
MchemG应助LWJ采纳,获得10
17秒前
神兽下山完成签到,获得积分10
17秒前
18秒前
19秒前
annzl发布了新的文献求助10
24秒前
NexusExplorer应助王大炮采纳,获得10
24秒前
Hello应助王大炮采纳,获得10
25秒前
HAG发布了新的文献求助30
25秒前
脑洞疼应助bangbangsh采纳,获得10
26秒前
26秒前
微笑完成签到,获得积分10
26秒前
28秒前
mysci发布了新的文献求助10
28秒前
阿弥陀佛发布了新的文献求助10
28秒前
繁荣的康乃馨应助xiaojinyu采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533801
关于积分的说明 11263775
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806113
邀请新用户注册赠送积分活动 882955
科研通“疑难数据库(出版商)”最低求助积分说明 809629