Bias correction based on weighted likelihood for conditional estimation of subgroup effects in randomized clinical trials

随机对照试验 子群分析 推论 截断(统计) 统计 数学 临床试验 条件概率分布 医学 置信区间 内科学 计算机科学 人工智能
作者
Kiichiro Toyoizumi,Shigeyuki Matsui
出处
期刊:Statistics in Medicine [Wiley]
卷期号:41 (26): 5276-5289 被引量:1
标识
DOI:10.1002/sim.9567
摘要

Currently, many confirmatory randomized clinical trials (RCTs) with predictive markers have taken the all‐comers approach because of the difficulty in developing predictive markers that are biologically compelling enough to apply the enrichment approach to restrict the patient population to a marker‐defined subgroup. However, such a RCT with weak marker credentials can conclude that the new treatment is efficacious only in the subgroup, especially when the primary analysis demonstrates some treatment efficacy in the subgroup, but the overall treatment efficacy is not significant under a control of study‐wise alpha rate. In this article, we consider conditional estimation of subgroup treatment effects, given the negative result in testing the overall treatment efficacy in the trial. To address the problem of unstable estimation due to the truncation in the distribution of the test statistic on overall treatment efficacy, we propose a new approach based on a weighted likelihood for the truncated distribution. The weighted likelihood can be derived by invoking a randomized test with a smooth critical function for the overall test. Our approach allows for point and interval estimations of the conditional effects consistently based on the standard maximum likelihood inference. Numerical evaluations, including simulations and application to real clinical trials, and guidelines for implementing our methods with R‐codes, are provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
上官若男应助zh1858f采纳,获得10
4秒前
xiaoxioayixi发布了新的文献求助10
5秒前
高天雨发布了新的文献求助10
5秒前
Ecokarster发布了新的文献求助10
7秒前
7秒前
isvv发布了新的文献求助20
10秒前
Jasper应助义气的羽毛采纳,获得10
11秒前
KY完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
天天完成签到,获得积分10
12秒前
原野发布了新的文献求助10
12秒前
海人完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
小马甲应助qqqqqq采纳,获得10
15秒前
15秒前
16秒前
Rain完成签到,获得积分10
16秒前
科目三应助liuying采纳,获得10
16秒前
www268完成签到,获得积分10
16秒前
Ecokarster完成签到,获得积分10
19秒前
19秒前
21秒前
共享精神应助Guo采纳,获得10
21秒前
英俊的铭应助诚心黑夜采纳,获得10
21秒前
22秒前
22秒前
billevans发布了新的文献求助30
22秒前
23秒前
大个应助fengjingjing采纳,获得10
23秒前
科研通AI6.1应助DG采纳,获得10
25秒前
Criminology34举报ewbo求助涉嫌违规
25秒前
风趣烤鸡完成签到,获得积分10
25秒前
25秒前
隐形曼青应助xw采纳,获得10
26秒前
科研通AI6.1应助aoi采纳,获得10
27秒前
DJY发布了新的文献求助10
27秒前
花海完成签到,获得积分10
27秒前
kiminonawa应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323