Bias correction based on weighted likelihood for conditional estimation of subgroup effects in randomized clinical trials

随机对照试验 子群分析 推论 截断(统计) 统计 数学 临床试验 条件概率分布 医学 置信区间 内科学 计算机科学 人工智能
作者
Kiichiro Toyoizumi,Shigeyuki Matsui
出处
期刊:Statistics in Medicine [Wiley]
卷期号:41 (26): 5276-5289 被引量:1
标识
DOI:10.1002/sim.9567
摘要

Currently, many confirmatory randomized clinical trials (RCTs) with predictive markers have taken the all‐comers approach because of the difficulty in developing predictive markers that are biologically compelling enough to apply the enrichment approach to restrict the patient population to a marker‐defined subgroup. However, such a RCT with weak marker credentials can conclude that the new treatment is efficacious only in the subgroup, especially when the primary analysis demonstrates some treatment efficacy in the subgroup, but the overall treatment efficacy is not significant under a control of study‐wise alpha rate. In this article, we consider conditional estimation of subgroup treatment effects, given the negative result in testing the overall treatment efficacy in the trial. To address the problem of unstable estimation due to the truncation in the distribution of the test statistic on overall treatment efficacy, we propose a new approach based on a weighted likelihood for the truncated distribution. The weighted likelihood can be derived by invoking a randomized test with a smooth critical function for the overall test. Our approach allows for point and interval estimations of the conditional effects consistently based on the standard maximum likelihood inference. Numerical evaluations, including simulations and application to real clinical trials, and guidelines for implementing our methods with R‐codes, are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助Han采纳,获得10
1秒前
moon发布了新的文献求助10
1秒前
科研通AI2S应助Vizz采纳,获得10
2秒前
知非发布了新的文献求助10
3秒前
浮游应助犹豫小蚂蚁采纳,获得10
3秒前
guojingjing发布了新的文献求助10
5秒前
5秒前
5秒前
Yun yun发布了新的文献求助10
6秒前
小丑发布了新的文献求助10
7秒前
慢慢发布了新的文献求助10
7秒前
changping应助蓝风铃采纳,获得10
8秒前
情怀应助橙子采纳,获得10
9秒前
ZhouQixing发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
syr完成签到,获得积分10
11秒前
abcd_1067发布了新的文献求助10
11秒前
搜集达人应助知非采纳,获得10
13秒前
jackten发布了新的文献求助10
13秒前
13秒前
123zyx发布了新的文献求助10
13秒前
14秒前
Vizz发布了新的文献求助10
15秒前
15秒前
16秒前
wanci应助亚铁氰化钾采纳,获得10
16秒前
yongjiang完成签到,获得积分10
17秒前
高高亦竹发布了新的文献求助30
17秒前
KyrieIrving关注了科研通微信公众号
17秒前
NexusExplorer应助甜甜斓采纳,获得10
18秒前
搜集达人应助che采纳,获得10
19秒前
科研通AI5应助慢慢采纳,获得10
19秒前
19秒前
balabala完成签到,获得积分20
20秒前
雷雷发布了新的文献求助10
20秒前
20秒前
烟花应助puppet采纳,获得10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228