环境科学
蒸散量
喀斯特
生态系统
植被(病理学)
水文学(农业)
生态系统服务
恢复生态学
降水
缺水
农林复合经营
水资源
生态学
地理
地质学
生物
病理
岩土工程
考古
气象学
医学
作者
Ruzhou Yi,Xianli Xu,Yaohua Zhang,Zongda Ye,Kelin Wang
摘要
Grain for Green project could result in high evapotranspiration (ET), exacerbate water shortage, and intensify conflicts in water demand between ecosystems and humans in many water-limited areas. However, it is still unclear how vegetation restoration would influence ET in humid karst regions where abundant precipitation but quick leakage. Particularly, it is challenging that existing ET measurement methods are not applicable simultaneously for various ecosystems in such highly heterogeneous and fragmented landscapes. To solve this issue, this study, for the first time, develops a new ET measurement system, by integrating multi-techniques, to quantify ET for multiple vegetation restoration types and identify their controlling factors in a humid karst region for three consecutive years. The results show that (a) for different succession stages during natural restoration, the ET of secondary forest (680 ± 7 mm yr−1) > shrub (564 ± 16 mm yr−1) > grass (546 ± 12 mm yr−1) > cropland (513 ± 8 mm yr−1) (P < 0.05); (b) ET of all ecosystems are far less than that of precipitation (1,059 ± 63 mm yr−1) but closer to potential ET (849 ± 11 mm yr−1), and soil moisture has been maintained at >0.20 cm3cm−3 in the growing season; (c) solar radiation and vapor pressure deficit are the two predominant factors on the ET (P < 0.01), while there is no significant relationship between ET and soil moisture (P > 0.05). The results suggest that vegetation restoration returned from cropland in humid karst regions increased ET but may not induce water scarcity for vegetation sustainability, at least under normal climatic conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI