Learning Patch-Channel Correspondence for Interpretable Face Forgery Detection

判别式 计算机科学 人工智能 模式识别(心理学) 频道(广播) 可解释性 特征(语言学) 面子(社会学概念) 去相关 特征提取 面部识别系统 计算机视觉 语音识别 计算机网络 社会科学 哲学 语言学 社会学
作者
Yingying Hua,Ruixin Shi,Pengju Wang,Shiming Ge
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1668-1680 被引量:14
标识
DOI:10.1109/tip.2023.3246793
摘要

Beyond high accuracy, good interpretability is very critical to deploy a face forgery detection model for visual content analysis. In this paper, we propose learning patch-channel correspondence to facilitate interpretable face forgery detection. Patch-channel correspondence aims to transform the latent features of a facial image into multi-channel interpretable features where each channel mainly encoders a corresponding facial patch. Towards this end, our approach embeds a feature reorganization layer into a deep neural network and simultaneously optimizes classification task and correspondence task via alternate optimization. The correspondence task accepts multiple zero-padding facial patch images and represents them into channel-aware interpretable representations. The task is solved by step-wisely learning channel-wise decorrelation and patch-channel alignment. Channel-wise decorrelation decouples latent features for class-specific discriminative channels to reduce feature complexity and channel correlation, while patch-channel alignment then models the pairwise correspondence between feature channels and facial patches. In this way, the learned model can automatically discover corresponding salient features associated to potential forgery regions during inference, providing discriminative localization of visualized evidences for face forgery detection while maintaining high detection accuracy. Extensive experiments on popular benchmarks clearly demonstrate the effectiveness of the proposed approach in interpreting face forgery detection without sacrificing accuracy. The source code is available at https://github.com/Jae35/IFFD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠萝吹雪发布了新的文献求助10
1秒前
li发布了新的文献求助10
1秒前
1秒前
1秒前
纳斯达克发布了新的文献求助10
3秒前
4秒前
5秒前
axt发布了新的文献求助10
5秒前
linmo发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
科目三应助方向采纳,获得10
7秒前
8秒前
9秒前
11秒前
hucanming完成签到,获得积分10
13秒前
哇wwwww发布了新的文献求助10
13秒前
kaka发布了新的文献求助10
13秒前
13秒前
13秒前
flymove发布了新的文献求助10
15秒前
阿鲁发布了新的文献求助10
15秒前
科研dog发布了新的文献求助10
15秒前
15秒前
556677y完成签到,获得积分20
16秒前
17秒前
Ava应助axt采纳,获得10
17秒前
开心啵啵应助fffffffq采纳,获得10
19秒前
苏哈托发布了新的文献求助10
19秒前
贺世儒发布了新的文献求助10
19秒前
bkagyin应助噜噜晓采纳,获得10
20秒前
跑在颖发布了新的文献求助10
21秒前
yaruyou发布了新的文献求助30
21秒前
眰恦完成签到 ,获得积分10
22秒前
22秒前
Qiao应助吱哦周采纳,获得10
22秒前
一个有点长的序完成签到 ,获得积分10
22秒前
23秒前
缓冲中发布了新的文献求助10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371