亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning Patch-Channel Correspondence for Interpretable Face Forgery Detection

判别式 计算机科学 人工智能 模式识别(心理学) 频道(广播) 可解释性 特征(语言学) 面子(社会学概念) 去相关 特征提取 面部识别系统 计算机视觉 语音识别 计算机网络 社会科学 哲学 语言学 社会学
作者
Yingying Hua,Ruixin Shi,Pengju Wang,Shiming Ge
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1668-1680 被引量:20
标识
DOI:10.1109/tip.2023.3246793
摘要

Beyond high accuracy, good interpretability is very critical to deploy a face forgery detection model for visual content analysis. In this paper, we propose learning patch-channel correspondence to facilitate interpretable face forgery detection. Patch-channel correspondence aims to transform the latent features of a facial image into multi-channel interpretable features where each channel mainly encoders a corresponding facial patch. Towards this end, our approach embeds a feature reorganization layer into a deep neural network and simultaneously optimizes classification task and correspondence task via alternate optimization. The correspondence task accepts multiple zero-padding facial patch images and represents them into channel-aware interpretable representations. The task is solved by step-wisely learning channel-wise decorrelation and patch-channel alignment. Channel-wise decorrelation decouples latent features for class-specific discriminative channels to reduce feature complexity and channel correlation, while patch-channel alignment then models the pairwise correspondence between feature channels and facial patches. In this way, the learned model can automatically discover corresponding salient features associated to potential forgery regions during inference, providing discriminative localization of visualized evidences for face forgery detection while maintaining high detection accuracy. Extensive experiments on popular benchmarks clearly demonstrate the effectiveness of the proposed approach in interpreting face forgery detection without sacrificing accuracy. The source code is available at https://github.com/Jae35/IFFD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助www采纳,获得10
12秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
BowieHuang应助科研通管家采纳,获得10
24秒前
聪明宛秋完成签到 ,获得积分10
24秒前
www发布了新的文献求助10
24秒前
小鱼完成签到 ,获得积分10
25秒前
38秒前
烟花应助Marciu33采纳,获得10
39秒前
49秒前
1分钟前
1分钟前
Marciu33发布了新的文献求助10
1分钟前
1分钟前
上官若男应助默默的板栗采纳,获得10
1分钟前
2分钟前
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
小唐完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
chenlc971125完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
loitinsuen完成签到,获得积分10
3分钟前
4分钟前
在水一方应助me采纳,获得10
4分钟前
4分钟前
4分钟前
默默的板栗完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
外向的妍完成签到,获得积分10
4分钟前
走啊走应助绝世高手采纳,获得30
4分钟前
雪白的听寒完成签到 ,获得积分10
4分钟前
慕青应助简单的凡儿采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534236
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582465
捐赠科研通 4562539
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450924