Video anomaly detection based on spatio-temporal relationships among objects

计算机科学 异常检测 人工智能 光学(聚焦) 模式识别(心理学) 对象(语法) 编码器 异常(物理) 编码(内存) 目标检测 凝聚态物理 操作系统 光学 物理
作者
Yan Wang,Tianying Liu,Jiaogen Zhou,Jihong Guan
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:532: 141-151 被引量:18
标识
DOI:10.1016/j.neucom.2023.02.027
摘要

Video anomaly detection is to automatically identify predefined anomalous contents (e.g. abnormal objects, behaviors and scenes) in videos. The performance of video anomaly detection can be effectively improved by making the model focus more on the anomalous objects in videos. However, such existing approaches usually rely on pre-trained models, which not only require additional auxiliary information but also face the challenge of anomaly diversity in the real world. In this paper, we propose a new video anomaly detection method based on spatio-temporal relationships among objects. Concretely, we use a fully convolutional encoder-decoder network with symmetric skip connections as the backbone network, which can effectively extract features from the object regions at different scales. In the encoding stage, an attention mechanism is used to enhance the model's understanding of the spatio-temporal relationships among various types of objects in the video. In the decoding stage, a dynamic pattern generator is designed to memorize the inter-object spatio-temporal relationships, which thus enhances the reconstructions of normal samples while making the reconstructions of abnormal samples more difficult. We conduct extensive experiments on three widely used video anomaly detection datasets CUHK Avenue, ShanghaiTech Campus and UCSD Ped2, and the experimental results show that our proposed method can significantly improve the performance, and achieves state-of-the-art overall performance (considering both effectiveness and efficiency). In particular, our method achieves a state-of-the-art AUC of 98.4% on the UCSD Ped2 dataset that consists of various anomalies in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助iW采纳,获得10
刚刚
Theshiled发布了新的文献求助10
刚刚
1秒前
lijinquan1988完成签到,获得积分10
1秒前
酷酷的滕发布了新的文献求助10
1秒前
tfldog发布了新的文献求助10
1秒前
1秒前
别封我了行吗完成签到,获得积分10
1秒前
august完成签到,获得积分10
1秒前
1秒前
鸣笛应助柠七采纳,获得20
1秒前
2秒前
北溟鱼发布了新的文献求助10
2秒前
2秒前
2秒前
无花果应助serein采纳,获得10
3秒前
发篇Sci不过分吧完成签到,获得积分10
3秒前
3秒前
天天快乐应助贪玩元晴采纳,获得10
4秒前
大模型应助Faye采纳,获得10
4秒前
斯文败类应助贼佛的小德采纳,获得10
4秒前
科研通AI2S应助lixm采纳,获得10
5秒前
认真雅阳完成签到 ,获得积分10
5秒前
博弈春秋发布了新的文献求助10
5秒前
LANKE完成签到,获得积分10
6秒前
Theshiled完成签到,获得积分10
6秒前
Betty完成签到,获得积分10
6秒前
jie酱拌面应助wujiao采纳,获得10
6秒前
无花果应助花开米兰城采纳,获得10
6秒前
粱烨华发布了新的文献求助10
7秒前
7秒前
小刘先生完成签到,获得积分20
8秒前
酷酷的滕完成签到,获得积分10
8秒前
矮小的万声完成签到,获得积分20
8秒前
8秒前
9秒前
laber应助红红采纳,获得50
9秒前
10秒前
10秒前
KaiZI发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794