Video anomaly detection based on spatio-temporal relationships among objects

计算机科学 异常检测 人工智能 光学(聚焦) 模式识别(心理学) 对象(语法) 编码器 异常(物理) 编码(内存) 目标检测 物理 凝聚态物理 光学 操作系统
作者
Yan Wang,Tianying Liu,Jiaogen Zhou,Jihong Guan
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:532: 141-151 被引量:18
标识
DOI:10.1016/j.neucom.2023.02.027
摘要

Video anomaly detection is to automatically identify predefined anomalous contents (e.g. abnormal objects, behaviors and scenes) in videos. The performance of video anomaly detection can be effectively improved by making the model focus more on the anomalous objects in videos. However, such existing approaches usually rely on pre-trained models, which not only require additional auxiliary information but also face the challenge of anomaly diversity in the real world. In this paper, we propose a new video anomaly detection method based on spatio-temporal relationships among objects. Concretely, we use a fully convolutional encoder-decoder network with symmetric skip connections as the backbone network, which can effectively extract features from the object regions at different scales. In the encoding stage, an attention mechanism is used to enhance the model's understanding of the spatio-temporal relationships among various types of objects in the video. In the decoding stage, a dynamic pattern generator is designed to memorize the inter-object spatio-temporal relationships, which thus enhances the reconstructions of normal samples while making the reconstructions of abnormal samples more difficult. We conduct extensive experiments on three widely used video anomaly detection datasets CUHK Avenue, ShanghaiTech Campus and UCSD Ped2, and the experimental results show that our proposed method can significantly improve the performance, and achieves state-of-the-art overall performance (considering both effectiveness and efficiency). In particular, our method achieves a state-of-the-art AUC of 98.4% on the UCSD Ped2 dataset that consists of various anomalies in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助UP采纳,获得10
刚刚
1351567822应助mmt采纳,获得10
1秒前
1秒前
1秒前
1秒前
大个应助山丘采纳,获得10
2秒前
lulubeans完成签到,获得积分10
3秒前
rock发布了新的文献求助10
3秒前
张磊完成签到,获得积分10
3秒前
liuguohua126完成签到,获得积分10
3秒前
琪七发布了新的文献求助10
3秒前
3秒前
625关注了科研通微信公众号
3秒前
方芳芳完成签到,获得积分10
3秒前
3秒前
水木飞雪完成签到,获得积分10
4秒前
封皮人完成签到,获得积分10
4秒前
5秒前
LQ关注了科研通微信公众号
5秒前
kecheng应助汪汪队路马采纳,获得10
6秒前
szh123发布了新的文献求助10
6秒前
6秒前
gj2221423完成签到 ,获得积分10
6秒前
不安的未来完成签到,获得积分10
6秒前
自由山槐发布了新的文献求助10
7秒前
zyy发布了新的文献求助10
7秒前
smottom应助大马哈鱼采纳,获得20
7秒前
千幻发布了新的文献求助10
7秒前
领导范儿应助lqkcqmu采纳,获得30
8秒前
windyTE完成签到,获得积分10
8秒前
SYLH应助负责的雨柏采纳,获得10
9秒前
10秒前
大个应助tt采纳,获得10
11秒前
Yoh1220发布了新的文献求助30
11秒前
13秒前
知画春秋完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
大气石头完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970572
求助须知:如何正确求助?哪些是违规求助? 3515219
关于积分的说明 11177438
捐赠科研通 3250374
什么是DOI,文献DOI怎么找? 1795265
邀请新用户注册赠送积分活动 875750
科研通“疑难数据库(出版商)”最低求助积分说明 805054