无线电技术
肝细胞癌
分割
随机森林
比例危险模型
总体生存率
医学
临床意义
机器学习
人工智能
深度学习
计算机科学
放射科
内科学
肿瘤科
作者
Krzysztof Bartnik,Mateusz Krzyziński,Tomasz Bartczak,Krzysztof Korzeniowski,Krzysztof Lamparski,Tadeusz Wróblewski,Michał Grąt,Wacław Hołówko,Katarzyna Mech,Joanna Lisowska,Magdalena Januszewicz,Przemysław Biecek
标识
DOI:10.1038/s41598-024-65630-z
摘要
Abstract Transarterial chemoembolization (TACE) represent the standard of therapy for non-operative hepatocellular carcinoma (HCC), while prediction of long term treatment outcomes is a complex and multifactorial task. In this study, we present a novel machine learning approach utilizing radiomics features from multiple organ volumes of interest (VOIs) to predict TACE outcomes for 252 HCC patients. Unlike conventional radiomics models requiring laborious manual segmentation limited to tumoral regions, our approach captures information comprehensively across various VOIs using a fully automated, pretrained deep learning model applied to pre-TACE CT images. Evaluation of radiomics random survival forest models against clinical ones using Cox proportional hazard demonstrated comparable performance in predicting overall survival. However, radiomics outperformed clinical models in predicting progression-free survival. Explainable analysis highlighted the significance of non-tumoral VOI features, with their cumulative importance superior to features from the largest liver tumor. The proposed approach overcomes the limitations of manual VOI segmentation, requires no radiologist input and highlight the clinical relevance of features beyond tumor regions. Our findings suggest the potential of this radiomics models in predicting TACE outcomes, with possible implications for other clinical scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI