LLMScenario: Large Language Model Driven Scenario Generation

计算机科学
作者
Cheng Chang,Siqi Wang,Jiawei Zhang,Jingwei Ge,Li Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tsmc.2024.3392930
摘要

Scenario engineering plays a vital role in various Industry 5.0 applications. In the field of autonomous driving systems, driving scenario data are important for the training and testing of critical modules. However, the corner scenario cases are usually rare and necessary to be extended. Existing methods cannot handle the interpretation and reasoning of the generation process well, which reduces the reliability and usability of the generated scenarios. With the rapid development of Foundation Models, especially the large language model (LLM), we can conduct scenario generation via more powerful tools. In this article, we propose LLMScenario, a novel LLM-driven scenario generation framework, which is composed of scenario prompt engineering, LLM scenario generation, and evaluation feedback tuning. The minimum scenario description specific to LLM is given by scenario analysis and ablation studies. We also appropriately design the score functions in terms of reality and rarity to evaluate the generated scenarios. The model performance is further enhanced through chain-of-thoughts and experiences. Different LLMs are also compared with our framework. Experimental results on naturalistic datasets demonstrate the effectiveness of LLMScenario, which can provide solid support for scenario engineering in Industry 5.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Ava应助乙烯采纳,获得30
2秒前
3秒前
3秒前
3秒前
yuan1226完成签到 ,获得积分10
3秒前
3秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
灰灰喵完成签到 ,获得积分10
9秒前
ycg发布了新的文献求助10
9秒前
Ahan发布了新的文献求助10
9秒前
公冶长发布了新的文献求助10
10秒前
情怀应助赖账的坦克采纳,获得10
13秒前
13秒前
大力沛萍发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助50
16秒前
苹果紊完成签到,获得积分10
16秒前
17秒前
17秒前
Xinxxx应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
Lu_ckilly完成签到 ,获得积分10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
一寒完成签到 ,获得积分10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
star应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
lili应助科研通管家采纳,获得30
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919581
求助须知:如何正确求助?哪些是违规求助? 4191579
关于积分的说明 13017920
捐赠科研通 3961771
什么是DOI,文献DOI怎么找? 2171864
邀请新用户注册赠送积分活动 1189776
关于科研通互助平台的介绍 1098444