LLMScenario: Large Language Model Driven Scenario Generation

计算机科学
作者
Cheng Chang,Siqi Wang,Jiawei Zhang,Jingwei Ge,Li Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tsmc.2024.3392930
摘要

Scenario engineering plays a vital role in various Industry 5.0 applications. In the field of autonomous driving systems, driving scenario data are important for the training and testing of critical modules. However, the corner scenario cases are usually rare and necessary to be extended. Existing methods cannot handle the interpretation and reasoning of the generation process well, which reduces the reliability and usability of the generated scenarios. With the rapid development of Foundation Models, especially the large language model (LLM), we can conduct scenario generation via more powerful tools. In this article, we propose LLMScenario, a novel LLM-driven scenario generation framework, which is composed of scenario prompt engineering, LLM scenario generation, and evaluation feedback tuning. The minimum scenario description specific to LLM is given by scenario analysis and ablation studies. We also appropriately design the score functions in terms of reality and rarity to evaluate the generated scenarios. The model performance is further enhanced through chain-of-thoughts and experiences. Different LLMs are also compared with our framework. Experimental results on naturalistic datasets demonstrate the effectiveness of LLMScenario, which can provide solid support for scenario engineering in Industry 5.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儞是哪个发布了新的文献求助10
刚刚
1秒前
啊娴仔完成签到,获得积分10
1秒前
Swan完成签到,获得积分20
1秒前
Sherlly完成签到,获得积分20
2秒前
欣喜电源完成签到,获得积分10
3秒前
yu完成签到,获得积分10
3秒前
小木a完成签到,获得积分10
3秒前
FashionBoy应助booooo采纳,获得10
6秒前
6秒前
8秒前
8秒前
z123完成签到,获得积分10
8秒前
LilG发布了新的文献求助10
9秒前
10秒前
搜集达人应助yixiaolou采纳,获得10
10秒前
10秒前
英俊的铭应助快薅秃头了采纳,获得10
10秒前
11秒前
CodeCraft应助九月采纳,获得10
12秒前
搞怪代桃发布了新的文献求助10
12秒前
几酝完成签到 ,获得积分10
13秒前
希望天下0贩的0应助小洋采纳,获得10
13秒前
小十一发布了新的文献求助10
14秒前
14秒前
畅快访蕊发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
哈哈哈哈哈哈完成签到,获得积分20
17秒前
九月完成签到,获得积分10
19秒前
csz515发布了新的文献求助10
20秒前
20秒前
小蘑菇应助冷艳的冬萱采纳,获得10
21秒前
善学以致用应助REad采纳,获得10
21秒前
慕青应助无糖乌龙茶采纳,获得10
21秒前
21秒前
Jerry完成签到,获得积分10
22秒前
22秒前
天秀之合完成签到,获得积分10
22秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570