LLMScenario: Large Language Model Driven Scenario Generation

计算机科学
作者
Cheng Chang,Siqi Wang,Jiawei Zhang,Jingwei Ge,Li Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tsmc.2024.3392930
摘要

Scenario engineering plays a vital role in various Industry 5.0 applications. In the field of autonomous driving systems, driving scenario data are important for the training and testing of critical modules. However, the corner scenario cases are usually rare and necessary to be extended. Existing methods cannot handle the interpretation and reasoning of the generation process well, which reduces the reliability and usability of the generated scenarios. With the rapid development of Foundation Models, especially the large language model (LLM), we can conduct scenario generation via more powerful tools. In this article, we propose LLMScenario, a novel LLM-driven scenario generation framework, which is composed of scenario prompt engineering, LLM scenario generation, and evaluation feedback tuning. The minimum scenario description specific to LLM is given by scenario analysis and ablation studies. We also appropriately design the score functions in terms of reality and rarity to evaluate the generated scenarios. The model performance is further enhanced through chain-of-thoughts and experiences. Different LLMs are also compared with our framework. Experimental results on naturalistic datasets demonstrate the effectiveness of LLMScenario, which can provide solid support for scenario engineering in Industry 5.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助b3lyp采纳,获得10
1秒前
1秒前
1秒前
丘比特应助koi采纳,获得10
1秒前
1秒前
跳跃雅青发布了新的文献求助10
1秒前
研友_LkD29n完成签到 ,获得积分10
2秒前
zanyez完成签到,获得积分10
2秒前
wlscj应助Johnlian采纳,获得30
3秒前
3秒前
科研通AI5应助我最棒采纳,获得10
3秒前
科研通AI6应助我最棒采纳,获得10
3秒前
科研通AI6应助lw采纳,获得10
4秒前
5秒前
6秒前
渝宝宝发布了新的文献求助10
7秒前
7秒前
柚子发布了新的文献求助10
8秒前
sukiyaki发布了新的文献求助10
9秒前
Aurora发布了新的文献求助10
9秒前
11秒前
Syne_发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
陈龙平完成签到 ,获得积分10
13秒前
研友_VZG7GZ应助Espoir采纳,获得10
14秒前
14秒前
15秒前
称心妙竹应助槐椟采纳,获得20
16秒前
都可以发布了新的文献求助10
16秒前
dll发布了新的文献求助10
18秒前
11发布了新的文献求助10
19秒前
积极彩虹完成签到,获得积分10
20秒前
koi发布了新的文献求助10
20秒前
21秒前
b3lyp发布了新的文献求助10
21秒前
ll完成签到,获得积分10
22秒前
junxyuan发布了新的文献求助10
23秒前
科研通AI6应助彩色的天寿采纳,获得10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207687
求助须知:如何正确求助?哪些是违规求助? 4385504
关于积分的说明 13657249
捐赠科研通 4244180
什么是DOI,文献DOI怎么找? 2328661
邀请新用户注册赠送积分活动 1326328
关于科研通互助平台的介绍 1278500