亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LLMScenario: Large Language Model Driven Scenario Generation

计算机科学
作者
Cheng Chang,Siqi Wang,Jiawei Zhang,Jingwei Ge,Li Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tsmc.2024.3392930
摘要

Scenario engineering plays a vital role in various Industry 5.0 applications. In the field of autonomous driving systems, driving scenario data are important for the training and testing of critical modules. However, the corner scenario cases are usually rare and necessary to be extended. Existing methods cannot handle the interpretation and reasoning of the generation process well, which reduces the reliability and usability of the generated scenarios. With the rapid development of Foundation Models, especially the large language model (LLM), we can conduct scenario generation via more powerful tools. In this article, we propose LLMScenario, a novel LLM-driven scenario generation framework, which is composed of scenario prompt engineering, LLM scenario generation, and evaluation feedback tuning. The minimum scenario description specific to LLM is given by scenario analysis and ablation studies. We also appropriately design the score functions in terms of reality and rarity to evaluate the generated scenarios. The model performance is further enhanced through chain-of-thoughts and experiences. Different LLMs are also compared with our framework. Experimental results on naturalistic datasets demonstrate the effectiveness of LLMScenario, which can provide solid support for scenario engineering in Industry 5.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐应助yan采纳,获得10
9秒前
12秒前
26秒前
Criminology34举报瞿寒求助涉嫌违规
41秒前
50秒前
52秒前
56秒前
1分钟前
手可摘星陈同学完成签到 ,获得积分10
1分钟前
怕黑的映真完成签到,获得积分10
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
yan发布了新的文献求助10
1分钟前
1分钟前
陈子宇完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
默默善愁发布了新的文献求助30
1分钟前
1分钟前
2分钟前
畅畅发布了新的文献求助10
2分钟前
畅畅完成签到 ,获得积分10
2分钟前
ww发布了新的文献求助10
2分钟前
Criminology34应助默默善愁采纳,获得10
2分钟前
荼白应助ww采纳,获得10
2分钟前
斯文败类应助null采纳,获得80
2分钟前
2分钟前
Criminology34举报默默诗筠求助涉嫌违规
2分钟前
yan关注了科研通微信公众号
2分钟前
桐桐应助伊萨卡采纳,获得10
3分钟前
大胆的碧菡完成签到,获得积分10
3分钟前
尹静涵完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
生姜批发刘哥完成签到 ,获得积分0
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413236
求助须知:如何正确求助?哪些是违规求助? 4530397
关于积分的说明 14122909
捐赠科研通 4445358
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408692