LLMScenario: Large Language Model Driven Scenario Generation

计算机科学
作者
Cheng Chang,Siqi Wang,Jiawei Zhang,Jingwei Ge,Li Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tsmc.2024.3392930
摘要

Scenario engineering plays a vital role in various Industry 5.0 applications. In the field of autonomous driving systems, driving scenario data are important for the training and testing of critical modules. However, the corner scenario cases are usually rare and necessary to be extended. Existing methods cannot handle the interpretation and reasoning of the generation process well, which reduces the reliability and usability of the generated scenarios. With the rapid development of Foundation Models, especially the large language model (LLM), we can conduct scenario generation via more powerful tools. In this article, we propose LLMScenario, a novel LLM-driven scenario generation framework, which is composed of scenario prompt engineering, LLM scenario generation, and evaluation feedback tuning. The minimum scenario description specific to LLM is given by scenario analysis and ablation studies. We also appropriately design the score functions in terms of reality and rarity to evaluate the generated scenarios. The model performance is further enhanced through chain-of-thoughts and experiences. Different LLMs are also compared with our framework. Experimental results on naturalistic datasets demonstrate the effectiveness of LLMScenario, which can provide solid support for scenario engineering in Industry 5.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘤嘤怪发布了新的文献求助10
1秒前
1秒前
leaolf应助良景似尘采纳,获得10
1秒前
乔乔兔发布了新的文献求助10
1秒前
libangle完成签到 ,获得积分10
1秒前
干净的雅青完成签到,获得积分10
2秒前
Inanopig完成签到,获得积分10
2秒前
初夏的风发布了新的文献求助10
2秒前
善学以致用应助煜琪采纳,获得10
2秒前
寂寞的孤容完成签到 ,获得积分10
2秒前
CodeCraft应助xxx采纳,获得10
3秒前
3秒前
马亚兰发布了新的文献求助10
3秒前
WLWLW应助zhao采纳,获得30
3秒前
Balance Man发布了新的文献求助10
4秒前
龙阔完成签到,获得积分10
4秒前
jj完成签到,获得积分10
4秒前
4秒前
谭一一完成签到,获得积分10
4秒前
4秒前
孙一斤完成签到,获得积分10
4秒前
5秒前
科研通AI5应助你终硕采纳,获得10
5秒前
Hello应助读不完的文献啊采纳,获得10
5秒前
大白发布了新的文献求助10
6秒前
高大的未来完成签到,获得积分10
6秒前
6秒前
大模型应助小虫子爱学习采纳,获得10
6秒前
7秒前
7秒前
我是老大应助xxxxhq采纳,获得10
8秒前
哈哈发布了新的文献求助10
8秒前
joyceee完成签到,获得积分20
8秒前
魔幻的谷兰完成签到,获得积分10
9秒前
害羞书易发布了新的文献求助10
9秒前
SciGPT应助LDDD采纳,获得10
10秒前
10秒前
汉堡包应助乔乔兔采纳,获得10
10秒前
张磊发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572213
求助须知:如何正确求助?哪些是违规求助? 3993051
关于积分的说明 12361033
捐赠科研通 3666193
什么是DOI,文献DOI怎么找? 2020525
邀请新用户注册赠送积分活动 1054832
科研通“疑难数据库(出版商)”最低求助积分说明 942261