LLMScenario: Large Language Model Driven Scenario Generation

计算机科学
作者
Cheng Chang,Siqi Wang,Jiawei Zhang,Jingwei Ge,Li Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tsmc.2024.3392930
摘要

Scenario engineering plays a vital role in various Industry 5.0 applications. In the field of autonomous driving systems, driving scenario data are important for the training and testing of critical modules. However, the corner scenario cases are usually rare and necessary to be extended. Existing methods cannot handle the interpretation and reasoning of the generation process well, which reduces the reliability and usability of the generated scenarios. With the rapid development of Foundation Models, especially the large language model (LLM), we can conduct scenario generation via more powerful tools. In this article, we propose LLMScenario, a novel LLM-driven scenario generation framework, which is composed of scenario prompt engineering, LLM scenario generation, and evaluation feedback tuning. The minimum scenario description specific to LLM is given by scenario analysis and ablation studies. We also appropriately design the score functions in terms of reality and rarity to evaluate the generated scenarios. The model performance is further enhanced through chain-of-thoughts and experiences. Different LLMs are also compared with our framework. Experimental results on naturalistic datasets demonstrate the effectiveness of LLMScenario, which can provide solid support for scenario engineering in Industry 5.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
luan完成签到,获得积分10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
LB应助科研通管家采纳,获得50
刚刚
浮游应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
泥昵哒耶完成签到,获得积分10
1秒前
大个应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
changping应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
Hello应助十三采纳,获得10
3秒前
4秒前
难过曼冬完成签到 ,获得积分10
5秒前
小马甲应助wang5945采纳,获得10
5秒前
5秒前
PANYIAO完成签到,获得积分10
5秒前
5秒前
6秒前
Orange应助Luo采纳,获得10
6秒前
李嘉衡关注了科研通微信公众号
6秒前
情怀应助高贵小海豚采纳,获得10
6秒前
7秒前
赵李锋完成签到,获得积分10
7秒前
风趣的飞荷完成签到,获得积分10
7秒前
诱导效应完成签到,获得积分10
8秒前
haha111完成签到,获得积分10
8秒前
104zw完成签到,获得积分10
8秒前
8秒前
FashionBoy应助小小何采纳,获得10
8秒前
858278343发布了新的文献求助10
9秒前
9秒前
慕青应助大内泌探009采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321937
求助须知:如何正确求助?哪些是违规求助? 4463561
关于积分的说明 13890461
捐赠科研通 4354764
什么是DOI,文献DOI怎么找? 2392002
邀请新用户注册赠送积分活动 1385582
关于科研通互助平台的介绍 1355331