LLMScenario: Large Language Model Driven Scenario Generation

计算机科学
作者
Cheng Chang,Siqi Wang,Jiawei Zhang,Jingwei Ge,Li Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tsmc.2024.3392930
摘要

Scenario engineering plays a vital role in various Industry 5.0 applications. In the field of autonomous driving systems, driving scenario data are important for the training and testing of critical modules. However, the corner scenario cases are usually rare and necessary to be extended. Existing methods cannot handle the interpretation and reasoning of the generation process well, which reduces the reliability and usability of the generated scenarios. With the rapid development of Foundation Models, especially the large language model (LLM), we can conduct scenario generation via more powerful tools. In this article, we propose LLMScenario, a novel LLM-driven scenario generation framework, which is composed of scenario prompt engineering, LLM scenario generation, and evaluation feedback tuning. The minimum scenario description specific to LLM is given by scenario analysis and ablation studies. We also appropriately design the score functions in terms of reality and rarity to evaluate the generated scenarios. The model performance is further enhanced through chain-of-thoughts and experiences. Different LLMs are also compared with our framework. Experimental results on naturalistic datasets demonstrate the effectiveness of LLMScenario, which can provide solid support for scenario engineering in Industry 5.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助hhdr采纳,获得10
刚刚
无敌吴硕完成签到,获得积分10
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助50
1秒前
2秒前
章鱼发布了新的文献求助10
2秒前
3秒前
酷bile完成签到,获得积分20
3秒前
4秒前
HMX完成签到,获得积分10
4秒前
Zx_1993应助Forward采纳,获得100
5秒前
莫晓岚发布了新的文献求助50
5秒前
5秒前
5秒前
爱喝冰可乐完成签到,获得积分10
6秒前
6秒前
上官若男应助DS采纳,获得10
6秒前
星落枕畔发布了新的文献求助10
7秒前
8秒前
麦候发布了新的文献求助10
9秒前
木子木子李完成签到,获得积分10
9秒前
西西发布了新的文献求助10
9秒前
干净的烧鹅完成签到,获得积分10
10秒前
SciGPT应助yeung采纳,获得10
11秒前
量子星尘发布了新的文献求助50
11秒前
12秒前
12秒前
萌宁发布了新的文献求助10
12秒前
在水一方应助ckk采纳,获得10
12秒前
所所应助章鱼采纳,获得10
13秒前
夕雨嘘完成签到,获得积分10
13秒前
爆米花应助云墨采纳,获得10
14秒前
15秒前
科研通AI6应助boymin2015采纳,获得10
15秒前
iNk应助Kashing采纳,获得20
15秒前
研友_VZG7GZ应助嗜血啊阳采纳,获得10
16秒前
weiteman完成签到,获得积分10
16秒前
kingwill应助空白采纳,获得20
17秒前
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124448
求助须知:如何正确求助?哪些是违规求助? 4328721
关于积分的说明 13488255
捐赠科研通 4163099
什么是DOI,文献DOI怎么找? 2282182
邀请新用户注册赠送积分活动 1283377
关于科研通互助平台的介绍 1222607