Convolutional neural network classification of cancer cytopathology images: taking breast cancer as an example

卷积神经网络 细胞病理学 乳腺癌 计算机科学 人工智能 癌症 人工神经网络 模式识别(心理学) 医学 病理 内科学 细胞学
作者
Mingxuan Xiao,Y Li,Xu Yan,Min Gao,Weimin Wang
标识
DOI:10.1145/3653946.3653968
摘要

Breast cancer is a relatively common cancer among gynecological cancers. Its diagnosis often relies on the pathology of cells in the lesion. The pathological diagnosis of breast cancer not only requires professionals and time, but also sometimes involves subjective judgment. To address the challenges of dependence on pathologists expertise and the time-consuming nature of achieving accurate breast pathological image classification, this paper introduces an approach utilizing convolutional neural networks (CNNs) for the rapid categorization of pathological images, aiming to enhance the efficiency of breast pathological image detection. And the approach enables the rapid and automatic classification of pathological images into benign and malignant groups. The methodology involves utilizing a convolutional neural network (CNN) model leveraging the Inceptionv3 architecture and transfer learning algorithm for extracting features from pathological images. Utilizing a neural network with fully connected layers and employing the SoftMax function for image classification. Additionally, the concept of image partitioning is introduced to handle high-resolution images. To achieve the ultimate classification outcome, the classification probabilities of each image block are aggregated using three algorithms: summation, product, and maximum. Experimental validation was conducted on the BreaKHis public dataset, resulting in accuracy rates surpassing 0.92 across all four magnification coefficients (40X, 100X, 200X, and 400X). It demonstrates that the proposed method effectively enhances the accuracy in classifying pathological images of breast cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yippee完成签到,获得积分10
1秒前
kanoz发布了新的文献求助20
2秒前
Qianbaor应助raiychemj采纳,获得100
2秒前
2秒前
爱笑夜蕾发布了新的文献求助10
3秒前
打打应助zy采纳,获得10
4秒前
米米发布了新的文献求助10
4秒前
123456发布了新的文献求助10
6秒前
6秒前
LKSkywalker发布了新的文献求助10
7秒前
、、完成签到,获得积分20
7秒前
8秒前
呆萌刺猬完成签到 ,获得积分10
8秒前
ww发布了新的文献求助10
11秒前
11秒前
13秒前
13秒前
小猴不爱吃水果完成签到,获得积分20
15秒前
61489486发布了新的文献求助10
16秒前
17秒前
今后应助入海采纳,获得10
18秒前
无花果应助知来者采纳,获得10
19秒前
20秒前
20秒前
执执发布了新的文献求助10
20秒前
奥沙利楠发布了新的文献求助10
22秒前
小马甲应助123采纳,获得10
23秒前
Yyy发布了新的文献求助10
23秒前
酒仙发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
25秒前
25秒前
25秒前
26秒前
jinyi发布了新的文献求助10
26秒前
ww完成签到,获得积分20
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542916
求助须知:如何正确求助?哪些是违规求助? 3120308
关于积分的说明 9342102
捐赠科研通 2818290
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978