Hybrid Clot Histomic–Transcriptomic Models Predict Functional Outcome After Mechanical Thrombectomy in Acute Ischemic Stroke

改良兰金量表 医学 冲程(发动机) 转录组 病理 组织学 内科学 心脏病学 缺血性中风 基因表达 缺血 基因 机械工程 工程类 生物化学 化学
作者
Briana A. Santo,Kerry E. Poppenberg,Shiau-Sing K. Ciecierska,Ammad A. Baig,Kunal P. Raygor,Tatsat R. Patel,Munjal Shah,Elad I. Levy,Adnan H. Siddiqui,Vincent M. Tutino
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:95 (6): 1285-1296 被引量:1
标识
DOI:10.1227/neu.0000000000003003
摘要

BACKGROUND AND OBJECTIVES: Histologic and transcriptomic analyses of retrieved stroke clots have identified features associated with patient outcomes. Previous studies have demonstrated the predictive capacity of histology or expression features in isolation. Few studies, however, have investigated how paired histologic image features and expression patterns from the retrieved clots can improve understanding of clot pathobiology and our ability to predict long-term prognosis. We hypothesized that computational models trained using clot histomics and mRNA expression can predict early neurological improvement (ENI) and 90-day functional outcome (modified Rankin Scale Score, mRS) better than models developed using histological composition or expression data alone. METHODS: We performed paired histological and transcriptomic analysis of 32 stroke clots. ENI was defined as a delta-National Institutes of Health Stroke Score/Scale > 4, and a good long-term outcome was defined as mRS ≤2 at 90 days after procedure. Clots were H&E-stained and whole-slide imaged at 40×. An established digital pathology pipeline was used to extract 237 histomic features and to compute clot percent composition (%Comp). When dichotomized by either the ENI or mRS thresholds, differentially expressed genes were identified as those with absolute fold-change >1.5 and q < 0.05. Machine learning with recursive feature elimination (RFE) was used to select clot features and evaluate computational models for outcome prognostication. RESULTS: For ENI, RFE identified 9 optimal histologic and transcriptomic features for the hybrid model, which achieved an accuracy of 90.8% (area under the curve [AUC] = 0.98 ± 0.08) in testing and outperformed models based on histomics (AUC = 0.94 ± 0.09), transcriptomics (AUC = 0.86 ± 0.16), or %Comp (AUC = 0.70 ± 0.15) alone. For mRS, RFE identified 7 optimal histomic and transcriptomic features for the hybrid model. This model achieved an accuracy of 93.7% (AUC = 0.94 ± 0.09) in testing, also outperforming models based on histomics (AUC = 0.90 ± 0.11), transcriptomics (AUC = 0.55 ± 0.27), or %Comp (AUC = 0.58 ± 0.16) alone. CONCLUSION: Hybrid models offer improved outcome prognostication for patients with stroke. Identified digital histology and mRNA signatures warrant further investigation as biomarkers of patient functional outcome after thrombectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
zdx1022完成签到,获得积分10
3秒前
舒适的以南完成签到,获得积分10
3秒前
方赫然应助quan12138采纳,获得10
4秒前
沙青烟发布了新的文献求助10
5秒前
踏实以云发布了新的文献求助10
5秒前
qaz完成签到,获得积分10
6秒前
lbyscu完成签到 ,获得积分10
6秒前
6秒前
6秒前
在水一方应助李锐采纳,获得10
6秒前
派大星完成签到,获得积分10
8秒前
hfy完成签到,获得积分10
8秒前
猫小乐C发布了新的文献求助10
8秒前
9秒前
Candice应助洪山老狗采纳,获得10
9秒前
10秒前
orixero应助累啊采纳,获得10
10秒前
12秒前
12秒前
12秒前
13秒前
科研通AI2S应助洪山老狗采纳,获得10
14秒前
14秒前
易达发布了新的文献求助10
15秒前
lxy完成签到,获得积分10
15秒前
你小子完成签到,获得积分10
15秒前
gggj发布了新的文献求助10
15秒前
helinahs完成签到 ,获得积分10
16秒前
hfy发布了新的文献求助10
16秒前
lx33101128发布了新的文献求助10
17秒前
爆米花应助懒蛋采纳,获得10
18秒前
山复尔尔完成签到 ,获得积分10
19秒前
ren发布了新的文献求助30
19秒前
20秒前
李健应助吴金旗采纳,获得10
20秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256348
求助须知:如何正确求助?哪些是违规求助? 2898650
关于积分的说明 8301746
捐赠科研通 2567765
什么是DOI,文献DOI怎么找? 1394718
科研通“疑难数据库(出版商)”最低求助积分说明 652913
邀请新用户注册赠送积分活动 630557