Review of advances in tool condition monitoring techniques in the milling process

刀具磨损 停工期 过程(计算) 制造工程 航空航天 汽车工业 机床 计算机科学 领域(数学) 机械加工 工程类 机械工程 操作系统 数学 航空航天工程 纯数学
作者
T. Mohanraj,E S Kirubakaran,Dinesh Kumar Madheswaran,M L Naren,Suganithi Dharshan P,Mohamed N. Ibrahim
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 092002-092002 被引量:3
标识
DOI:10.1088/1361-6501/ad519b
摘要

Abstract Milling is an extremely adaptable process that can be utilized to fabricate a wide range of shapes and intricate 3D geometries. The versatility of the milling process renders it useful for the production of a diverse range of components and products in several industries, including aerospace, automotive, electronics, and medical equipment. Monitoring tool conditions is essential for maintaining product quality, minimizing production downtime, and maximizing tool life. Advances in this field have been driven by the need for increased productivity, reduced tool wear, and improved process efficiency. Tool condition monitoring (TCM) in the milling process is a critical aspect of machining operations. TCM involves assessing the health and performance of cutting tools used in milling machines. As technology evolves, staying updated with the latest developments in this field is essential for manufacturers seeking to optimize their milling operations. However, addressing the challenges associated with sensor integration, data analysis, and cost-effectiveness remains crucial. To fill this research gap, this paper provides an overview of the extensive literature on monitoring milling tool conditions. It summarizes the key focus areas, including tool wear sensors and the application of various machine learning and deep learning algorithms. It also discusses the potential applications of TCM beyond wear detection, such as predicting tool breakage, tool wear, the cutting tool’s remaining lifetime, and the challenges faced by TCMs. This review also provides suggestions for potential future research endeavors and is anticipated to offer valuable insights for the development of advanced TCMs in terms of tool wear monitoring and predicting remaining useful life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霖霖完成签到,获得积分10
刚刚
领导范儿应助博修采纳,获得10
1秒前
一杯六一完成签到,获得积分10
2秒前
huangluling完成签到,获得积分10
2秒前
如意的问枫完成签到 ,获得积分10
4秒前
zfg发布了新的文献求助10
5秒前
今后应助hcj采纳,获得10
5秒前
mumu应助xzy998采纳,获得10
6秒前
南风完成签到,获得积分10
7秒前
可耐的乐荷完成签到,获得积分10
8秒前
8R60d8应助东单的单车采纳,获得10
8秒前
霖霖发布了新的文献求助10
9秒前
Mango完成签到 ,获得积分10
10秒前
13秒前
明理的踏歌完成签到,获得积分10
13秒前
123完成签到 ,获得积分10
13秒前
小马想毕业完成签到,获得积分10
14秒前
14秒前
Akim应助LQ采纳,获得10
14秒前
娟娟完成签到,获得积分10
15秒前
思源应助LAN采纳,获得10
17秒前
19秒前
19秒前
木槿发布了新的文献求助10
20秒前
zpc发布了新的文献求助10
20秒前
LukeLion发布了新的文献求助10
22秒前
justsayit完成签到 ,获得积分10
22秒前
moon发布了新的文献求助10
24秒前
钱念波发布了新的文献求助10
25秒前
26秒前
天真彩虹完成签到 ,获得积分10
27秒前
Abmony完成签到,获得积分20
27秒前
12完成签到,获得积分20
27秒前
走啊走啊走完成签到,获得积分10
30秒前
欢喜怀绿发布了新的文献求助10
30秒前
30秒前
啊啦啦应助科研通管家采纳,获得10
30秒前
30秒前
Owen应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271129
求助须知:如何正确求助?哪些是违规求助? 2910337
关于积分的说明 8353816
捐赠科研通 2580862
什么是DOI,文献DOI怎么找? 1403772
科研通“疑难数据库(出版商)”最低求助积分说明 655922
邀请新用户注册赠送积分活动 635344