亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Review of advances in tool condition monitoring techniques in the milling process

刀具磨损 停工期 过程(计算) 制造工程 航空航天 汽车工业 机床 计算机科学 领域(数学) 机械加工 工程类 机械工程 操作系统 数学 航空航天工程 纯数学
作者
T. Mohanraj,E S Kirubakaran,Dinesh Kumar Madheswaran,M L Naren,Suganithi Dharshan P,Mohamed N. Ibrahim
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 092002-092002 被引量:9
标识
DOI:10.1088/1361-6501/ad519b
摘要

Abstract Milling is an extremely adaptable process that can be utilized to fabricate a wide range of shapes and intricate 3D geometries. The versatility of the milling process renders it useful for the production of a diverse range of components and products in several industries, including aerospace, automotive, electronics, and medical equipment. Monitoring tool conditions is essential for maintaining product quality, minimizing production downtime, and maximizing tool life. Advances in this field have been driven by the need for increased productivity, reduced tool wear, and improved process efficiency. Tool condition monitoring (TCM) in the milling process is a critical aspect of machining operations. TCM involves assessing the health and performance of cutting tools used in milling machines. As technology evolves, staying updated with the latest developments in this field is essential for manufacturers seeking to optimize their milling operations. However, addressing the challenges associated with sensor integration, data analysis, and cost-effectiveness remains crucial. To fill this research gap, this paper provides an overview of the extensive literature on monitoring milling tool conditions. It summarizes the key focus areas, including tool wear sensors and the application of various machine learning and deep learning algorithms. It also discusses the potential applications of TCM beyond wear detection, such as predicting tool breakage, tool wear, the cutting tool’s remaining lifetime, and the challenges faced by TCMs. This review also provides suggestions for potential future research endeavors and is anticipated to offer valuable insights for the development of advanced TCMs in terms of tool wear monitoring and predicting remaining useful life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助四月采纳,获得10
16秒前
30秒前
46秒前
四月发布了新的文献求助10
50秒前
hwen1998完成签到 ,获得积分10
51秒前
四月完成签到,获得积分10
1分钟前
1分钟前
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
Miracle完成签到,获得积分10
1分钟前
有何丿不可完成签到 ,获得积分10
2分钟前
强强科研完成签到,获得积分10
2分钟前
2分钟前
强强科研发布了新的文献求助10
2分钟前
3分钟前
世隐发布了新的文献求助10
3分钟前
世隐完成签到,获得积分10
3分钟前
3分钟前
guoguo82发布了新的文献求助10
3分钟前
海派Hi完成签到 ,获得积分10
3分钟前
情怀应助Ffpcjwcx采纳,获得10
3分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
4分钟前
guoguo82完成签到,获得积分10
4分钟前
4分钟前
何三岁发布了新的文献求助10
4分钟前
小白菜完成签到,获得积分10
4分钟前
4分钟前
风趣的南松完成签到 ,获得积分20
4分钟前
5分钟前
大方荷花完成签到 ,获得积分10
6分钟前
直率的小鸭子完成签到,获得积分10
7分钟前
希望天下0贩的0应助hqc采纳,获得10
7分钟前
7分钟前
黑翅鸢完成签到 ,获得积分10
7分钟前
hqc发布了新的文献求助10
7分钟前
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3655678
求助须知:如何正确求助?哪些是违规求助? 3218534
关于积分的说明 9724452
捐赠科研通 2927071
什么是DOI,文献DOI怎么找? 1602990
邀请新用户注册赠送积分活动 755892
科研通“疑难数据库(出版商)”最低求助积分说明 733603