On compositional generalization of transformer-based neural machine translation

计算机科学 变压器 机器翻译 一般化 翻译(生物学) 人工智能 数学 电气工程 化学 电压 工程类 数学分析 生物化学 信使核糖核酸 基因
作者
Yongjing Yin,Lian Fu,Yafu Li,Yue Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:111: 102491-102491 被引量:1
标识
DOI:10.1016/j.inffus.2024.102491
摘要

Neural networks have been shown to have deficiencies in the ability of compositional generalization while existing work has generally targeted semantic parsing tasks. In this paper, we study the challenge of machine translation and introduce a dedicated Chinese→English dataset, CoGniTion (Compositional Generalization Machine Translation). The training, validation, and test sets have 216k, 10k, and 10k sentence pairs, respectively, which are simple but contain a variety of phrases. More importantly, we construct 2160 novel compounds(phrases) unseen in the training data and each compound is embedded into 5 distinct contexts, forming the CG-test set with 10,800 samples. We evaluate the performance of Transformer models based on conventional metrics like BLEU and the proposed compound translation error rates, demonstrating their difficulty in handling compositional generalization. For the Transformer trained from scratch, 27.42% of the test sentences are translated incorrectly, and 62.88% of the compounds fail to be translated consistently. The pretrained language models (PLM) including the large language models (LLM) still exhibit approximately 30% inconsistency. Moreover, we conduct an empirical analysis of various factors that impact compound translation performance, and show that the performance of PLMs may be overestimated due to unavoidable composition exposure in pertaining data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助康康采纳,获得10
刚刚
尐菟菟发布了新的文献求助10
1秒前
白华苍松发布了新的文献求助10
1秒前
传奇3应助北执采纳,获得10
2秒前
从容万恶完成签到,获得积分10
2秒前
3秒前
温夜天完成签到,获得积分10
3秒前
5秒前
可爱的函函应助常冬寒采纳,获得10
7秒前
Kunqi完成签到,获得积分10
7秒前
7秒前
Sui关注了科研通微信公众号
7秒前
科研通AI2S应助小秃兄采纳,获得10
8秒前
薰硝壤应助Vincent采纳,获得10
11秒前
薰硝壤应助张姣姣采纳,获得20
11秒前
11秒前
11秒前
12秒前
大力盼波发布了新的文献求助10
12秒前
小骆驼应助Agnesma采纳,获得10
14秒前
15秒前
Jasper应助秋葵拌饭采纳,获得10
15秒前
demon发布了新的文献求助10
16秒前
17秒前
zhangyuheng发布了新的文献求助10
17秒前
Sui发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
魁梧的蜜蜂完成签到,获得积分10
18秒前
19秒前
19秒前
七叶花开完成签到,获得积分10
20秒前
哔哩哔哩往上爬完成签到 ,获得积分10
20秒前
李健应助科研进化中采纳,获得10
21秒前
21秒前
21秒前
可乐完成签到,获得积分10
22秒前
研友_LB13k8关注了科研通微信公众号
22秒前
情怀应助坚定的凡松采纳,获得10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
Trace Fossils 1500
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685