Identification of climatic tipping points and transitions in Chinese loess grain-size records utilizing nonlinear time series analysis

黄土 系列(地层学) 鉴定(生物学) 非线性系统 地质学 自然地理学 地理 地貌学 物理 生态学 古生物学 量子力学 生物
作者
Huaru Xue,Song Song,Mengfan Qiu,Xiaofang Huang,Shiling Yang,Zihua Tang
出处
期刊:Quaternary International [Elsevier]
标识
DOI:10.1016/j.quaint.2024.06.011
摘要

As one of the most important terrestrial sediments, Chinese loess provides valuable information on regional and global climatic and environmental changes and holds great potential for studying on nonlinear behaviors of the East Asian monsoon system. Utilizing objective and quantitative methods to identify tipping points and climate transitions in paleoclimatic records can help us understand the climatic change in the Chinese Loess Plateau (CLP). This study explores critical tipping points and nonlinear climate transitions within the CLP using the Chiloparts record, a comprehensive 2600-ka paleoclimate dataset. We pinpointed potential tipping points using recurrence quantification analysis and the augmented Kolmogorov-Smirnov test, ultimately leading to 15 critical tipping points. We argued that these 15 tipping points represent some of the most significant climatic changes recorded in the Chinese loess paleoclimate record. Employing recurrence quantification analysis, recurrence networks, and visibility graphs, we also identified several climate transitions and provided some nonlinear information, including the Mid-Pleistocene Transition (MPT) as well as the Mid-Brunhes Transition (MBT). We particularly highlight a significant climatic regime transition around 500 ka that may reflect a nonlinear response to variations in the Atlantic Meridional Overturning Circulation (AMOC). Our research also contributes to the understanding of the complex interplay between loess deposition, environmental change, and tectonic activity, emphasizing the need for further investigations to elucidate the mechanisms driving these transitions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张zi发布了新的文献求助10
刚刚
yatou5651发布了新的文献求助10
1秒前
1秒前
小魏不学无术完成签到,获得积分10
1秒前
木棉发布了新的文献求助10
1秒前
A1234发布了新的文献求助10
2秒前
英俊的铭应助弄井采纳,获得30
2秒前
小二郎应助Dean采纳,获得10
3秒前
故意的冰淇淋完成签到 ,获得积分10
3秒前
3秒前
远方完成签到,获得积分10
4秒前
kiminonawa完成签到,获得积分0
5秒前
zrz完成签到,获得积分10
5秒前
6秒前
传奇3应助morlison采纳,获得10
6秒前
9秒前
9秒前
10秒前
11秒前
乐呀完成签到,获得积分10
11秒前
木头人呐完成签到 ,获得积分10
11秒前
小马甲应助吴岳采纳,获得10
11秒前
天天向上赶完成签到,获得积分10
11秒前
整齐的凡梦完成签到,获得积分10
12秒前
孙冉冉发布了新的文献求助10
13秒前
MHB应助towerman采纳,获得10
14秒前
Dean发布了新的文献求助10
14秒前
15秒前
加油加油发布了新的文献求助10
15秒前
lili完成签到 ,获得积分10
16秒前
文剑武书生完成签到,获得积分10
17秒前
科研通AI5应助无限鞅采纳,获得10
17秒前
17秒前
852应助木棉采纳,获得10
17秒前
18秒前
卓哥完成签到,获得积分10
19秒前
20秒前
Agan发布了新的文献求助10
20秒前
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808