Improving AI Model Performance by Augmenting Synthetic Data

计算机科学 生化工程 人工智能 数据科学 工程类
作者
Madhuchanda Banerjee
出处
期刊:International Journal For Multidisciplinary Research [International Journal for Multidisciplinary Research (IJFMR)]
卷期号:6 (2)
标识
DOI:10.36948/ijfmr.2024.v06i02.18972
摘要

In recent years, supervised learning has improved many computer vision problems. However, data scarcity, lack of labeled data, and imbalanced datasets have created issues in adopting this improvement in the medical imaging domain. With the recent advancement in other large language and vision language models(eg: chatgpt, DALL-E) generating synthetic data has become easier. However, this is still cost-prohibitive for large-scale datasets specifically image dataset generation. This approach can also may not be suitable for privacy-first datasets. In this work, the proposed methodology is to generate synthetic images based on available labeled images and then use these generated images along with the existing data to solve above mentioned issues. Chest X-ray datasets are one of the complex datasets that suffer from label imbalance problems and strict data privacy is required for handling any such kind of data. In this work, a simplified generative adversarial network-based solution is used which is cost-effective and provides better results than only using available datasets. This proposed method is especially useful for privacy-first, imbalanced datasets. Finally, this solution was compared with some existing proposals. The promising result obtained using this methodology shows that this proposed solution can be expanded to other domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jodie发布了新的文献求助10
刚刚
枯木逢春完成签到,获得积分20
刚刚
刚刚
所所应助Sakura采纳,获得10
1秒前
记录吐吐发布了新的文献求助10
2秒前
fg完成签到,获得积分10
2秒前
枯木逢春发布了新的文献求助30
4秒前
小二郎应助肖雪依采纳,获得10
4秒前
星辰大海应助调皮的沛萍采纳,获得10
5秒前
5秒前
5秒前
5秒前
Jasper应助allen7u采纳,获得10
6秒前
颜陌完成签到,获得积分10
7秒前
8秒前
匹诺曹完成签到,获得积分20
8秒前
夜柒七发布了新的文献求助10
9秒前
卫wei完成签到,获得积分10
9秒前
10秒前
23lk发布了新的文献求助10
10秒前
10秒前
温乘云发布了新的文献求助30
11秒前
11秒前
dylan1995发布了新的文献求助10
12秒前
Ava应助羫孔采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
pharrah发布了新的文献求助10
14秒前
14秒前
16秒前
拼搏荧发布了新的文献求助10
16秒前
调皮的沛萍完成签到,获得积分20
16秒前
23lk发布了新的文献求助10
16秒前
huofuman发布了新的文献求助10
16秒前
沧笙踏歌发布了新的文献求助10
17秒前
Chushi完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143