A Review of NILM Applications with Machine Learning Approaches

计算机科学 鉴定(生物学) 智能电表 过程(计算) 智能电网 异常检测 机器学习 网格 领域(数学分析) 人工智能 能量(信号处理) 工程类 数学分析 统计 植物 几何学 数学 生物 电气工程 操作系统
作者
Maheesha Dhashantha Silva,Qi Liu
出处
期刊:Computers, materials & continua 卷期号:79 (2): 2971-2989
标识
DOI:10.32604/cmc.2024.051289
摘要

In recent years, Non-Intrusive Load Monitoring (NILM) has become an emerging approach that provides affordable energy management solutions using aggregated load obtained from a single smart meter in the power grid.Furthermore, by integrating Machine Learning (ML), NILM can efficiently use electrical energy and offer less of a burden for the energy monitoring process.However, conducted research works have limitations for real-time implementation due to the practical issues.This paper aims to identify the contribution of ML approaches to developing a reliable Energy Management (EM) solution with NILM.Firstly, phases of the NILM are discussed, along with the research works that have been conducted in the domain.Secondly, the contribution of machine learning approaches in three aspects is discussed: Supervised learning, unsupervised learning, and hybrid modeling.It highlights the limitations in the applicability of ML approaches in the field.Then, the challenges in the realtime implementation are concerned with six use cases: Difficulty in recognizing multiple loads at a given time, cost of running the NILM system, lack of universal framework for appliance detection, anomaly detection and new appliance identification, and complexity of the electricity loads and real-time demand side management.Furthermore, options for selecting an approach for an efficient NILM framework are suggested.Finally, suggestions are provided for future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LJJ完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
4秒前
阿姨洗铁路完成签到 ,获得积分10
9秒前
抹不掉的记忆完成签到,获得积分10
11秒前
11秒前
余杭村王小虎完成签到,获得积分10
12秒前
韭黄完成签到,获得积分20
16秒前
jeffrey完成签到,获得积分10
16秒前
Rondab应助机灵枕头采纳,获得10
22秒前
佳无夜完成签到,获得积分10
27秒前
摆哥完成签到,获得积分10
31秒前
66完成签到,获得积分10
36秒前
zlqq完成签到 ,获得积分10
36秒前
Hardskills发布了新的文献求助10
39秒前
40秒前
之_ZH完成签到 ,获得积分10
48秒前
gds2021完成签到 ,获得积分10
50秒前
你好呀嘻嘻完成签到 ,获得积分10
50秒前
梅特卡夫完成签到,获得积分10
52秒前
熊雅完成签到,获得积分10
53秒前
55秒前
睡到自然醒完成签到 ,获得积分10
56秒前
cis2014完成签到,获得积分10
58秒前
独特的大有完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
59秒前
1分钟前
xingyi完成签到,获得积分10
1分钟前
1分钟前
舒心的秋荷完成签到 ,获得积分10
1分钟前
zz123发布了新的文献求助10
1分钟前
liaomr完成签到 ,获得积分10
1分钟前
粗犷的灵松完成签到,获得积分10
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
1分钟前
ncuwzq完成签到,获得积分10
1分钟前
yshj完成签到 ,获得积分10
1分钟前
1分钟前
净禅完成签到 ,获得积分10
1分钟前
1分钟前
迷人的寒风完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022