Target Detection for USVs by Radar–Vision Fusion With Swag-Robust Distance-Aware Probabilistic Multimodal Data Association

人工智能 计算机视觉 计算机科学 雷达 传感器融合 惯性测量装置 概率逻辑 投影(关系代数) 雷达工程细节 雷达成像 算法 电信
作者
Zhenglin Li,Tianxin Yuan,Liyan Ma,Yang Zhou,Yan Peng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 20177-20187 被引量:1
标识
DOI:10.1109/jsen.2024.3394703
摘要

Unmanned surface vehicles (USVs) have been widely used for a wide range of tasks in the past decades. Accurate perception of the surrounding environment on the water surface under complex conditions is crucial for USVs to conduct effective operations. This paper proposes a radar-vision fusion framework for USVs to accurately detect typical targets on the water surface. The modality difference between images and radar measurements, along with their perpendicular coordinates presents challenges in the fusion process. The swaying of USVs on water and the extensive areas of perception enhance the difficulties of multi-sensor data association. To address these problems, we propose two modules to enhance multi-sensor fusion performance: a movement-compensated projection module and a distance-aware probabilistic data association module. The former effectively reduces projection bias during the alignment process of radar and camera signals by compensating for sensor movement using measured roll and pitch angles from the inertial measurement unit (IMU). The latter module models target regions guided by each radar measurement as a bivariate Gaussian distribution, with its covariance matrix adaptively derived based on the distance between targets and the camera. Consequently, the association of radar points and images is robust to projection errors and works well for multi-scale objects. Features of radar points and images are subsequently extracted with two parallel backbones and fused at different levels to provide sufficient semantic information for robust object detection. The proposed framework achieves an AP of 0.501 on the challenging real-world dataset established by us, outperforming state-of-the-art vision-only and radar-vision fusion methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助666999采纳,获得10
1秒前
华仔应助666999采纳,获得10
1秒前
希望天下0贩的0应助113312采纳,获得30
1秒前
1秒前
舒心梦玉完成签到,获得积分10
1秒前
2秒前
马薄函发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
FashionBoy应助577采纳,获得10
5秒前
青年才俊发布了新的文献求助10
7秒前
陈森发布了新的文献求助10
7秒前
hc发布了新的文献求助10
8秒前
8秒前
新晋学术小生完成签到 ,获得积分10
9秒前
9秒前
十一完成签到,获得积分10
9秒前
开开SWAG完成签到,获得积分20
10秒前
together73W完成签到 ,获得积分10
10秒前
wzk完成签到,获得积分10
11秒前
完美世界应助hc采纳,获得10
11秒前
充电宝应助Sally采纳,获得10
11秒前
王大可发布了新的文献求助10
11秒前
12秒前
华仔应助马薄函采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
Rage_Wang应助科研通管家采纳,获得20
14秒前
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
香蕉觅云应助i7采纳,获得10
14秒前
Rage_Wang应助科研通管家采纳,获得20
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752875
求助须知:如何正确求助?哪些是违规求助? 3296450
关于积分的说明 10093989
捐赠科研通 3011290
什么是DOI,文献DOI怎么找? 1653702
邀请新用户注册赠送积分活动 788396
科研通“疑难数据库(出版商)”最低求助积分说明 752809