Target Detection for USVs by Radar–Vision Fusion With Swag-Robust Distance-Aware Probabilistic Multimodal Data Association

人工智能 计算机视觉 计算机科学 雷达 传感器融合 惯性测量装置 概率逻辑 投影(关系代数) 雷达工程细节 雷达成像 算法 电信
作者
Zhenglin Li,Tianxin Yuan,Liyan Ma,Yang Zhou,Yan Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 20177-20187 被引量:1
标识
DOI:10.1109/jsen.2024.3394703
摘要

Unmanned surface vehicles (USVs) have been widely used for a wide range of tasks in the past decades. Accurate perception of the surrounding environment on the water surface under complex conditions is crucial for USVs to conduct effective operations. This paper proposes a radar-vision fusion framework for USVs to accurately detect typical targets on the water surface. The modality difference between images and radar measurements, along with their perpendicular coordinates presents challenges in the fusion process. The swaying of USVs on water and the extensive areas of perception enhance the difficulties of multi-sensor data association. To address these problems, we propose two modules to enhance multi-sensor fusion performance: a movement-compensated projection module and a distance-aware probabilistic data association module. The former effectively reduces projection bias during the alignment process of radar and camera signals by compensating for sensor movement using measured roll and pitch angles from the inertial measurement unit (IMU). The latter module models target regions guided by each radar measurement as a bivariate Gaussian distribution, with its covariance matrix adaptively derived based on the distance between targets and the camera. Consequently, the association of radar points and images is robust to projection errors and works well for multi-scale objects. Features of radar points and images are subsequently extracted with two parallel backbones and fused at different levels to provide sufficient semantic information for robust object detection. The proposed framework achieves an AP of 0.501 on the challenging real-world dataset established by us, outperforming state-of-the-art vision-only and radar-vision fusion methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sandro发布了新的文献求助10
刚刚
刚刚
言三斤完成签到,获得积分10
刚刚
英姑应助Tycoon采纳,获得10
1秒前
阿木发布了新的文献求助10
1秒前
英俊的铭应助就好采纳,获得10
1秒前
无花果应助awoe采纳,获得10
2秒前
zyinger发布了新的文献求助10
2秒前
安静凡旋发布了新的文献求助10
2秒前
Veronica Mew完成签到 ,获得积分10
2秒前
2秒前
刘杨发布了新的文献求助10
2秒前
123完成签到,获得积分10
3秒前
3秒前
3秒前
Hello应助不挑食的Marcophages采纳,获得10
3秒前
4秒前
taozidetao发布了新的文献求助10
5秒前
悦耳剑身发布了新的文献求助10
5秒前
6秒前
Xin完成签到,获得积分10
6秒前
SYLH应助yuanjw采纳,获得10
6秒前
隐形曼青应助yuanjw采纳,获得10
6秒前
acadedog完成签到 ,获得积分10
6秒前
hcm发布了新的文献求助10
6秒前
Sandro完成签到,获得积分10
6秒前
33完成签到,获得积分10
6秒前
yduan发布了新的文献求助10
7秒前
苻人英完成签到,获得积分10
7秒前
无聊的骁关注了科研通微信公众号
7秒前
直率芮发布了新的文献求助10
8秒前
wu发布了新的文献求助10
8秒前
芋泥完成签到,获得积分10
8秒前
8秒前
Mike完成签到,获得积分10
8秒前
9秒前
1233330完成签到,获得积分10
9秒前
卧镁铀钳发布了新的文献求助20
10秒前
10秒前
Hans完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556386
求助须知:如何正确求助?哪些是违规求助? 3131978
关于积分的说明 9394071
捐赠科研通 2832007
什么是DOI,文献DOI怎么找? 1556617
邀请新用户注册赠送积分活动 726755
科研通“疑难数据库(出版商)”最低求助积分说明 716062