Habitat quality evaluation and pattern simulation of coastal salt marsh wetlands

湿地 盐沼 栖息地 沼泽 环境科学 水质 生态学 水禽 地理 水文学(农业) 地质学 生物 岩土工程
作者
Yuting Huang,Guanghui Zheng,Xianglan Li,Jingfeng Xiao,Zhe Xu,Pengpeng Tian
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:945: 174003-174003 被引量:2
标识
DOI:10.1016/j.scitotenv.2024.174003
摘要

Coastal salt marsh wetlands not only sequester a large amount of organic carbon, mitigating the effect of climate change, but also nurture rich wetland resources and diverse ecological environments. In this study, habitat pattern and quality of the Jiangsu Yancheng Wetland Rare Birds National Nature Reserve were studied. The evolution of habitat patterns was analyzed using the U-Net model and Sentinel-2 data. The habitat quality was evaluated using the InVEST model, while the future habitat pattern in 2027 under different scenarios were simulated using the PLUS model. Our results showed that, during 2017–2022, the Suaeda salsa habitat showed a net decrease in area of 2077.61 ha, while Spartina alterniflora and Phragmites australis habitats manifested a net increase in different degrees. The overall habitat pattern was characterized by fragmentation decline and regularization enhancement. The habitat quality decreased from 0.75 to 0.72, mainly due to the loss of the S. salsa habitat and the expansion of the P. australis habitat. The simulation results indicated that, the habitat quality is expected to further decline to 0.71 under the natural development scenario, and 390.27 ha of S. salsa habitat will convert to P. australis. While in government control scenario, the habitat quality is expected to improve to 0.78, which was 0.07 higher than that in natural development scenario, and S. salsa habitat can be restored well. This study provides a scientific basis for the protection of suitable habitats for waterfowl and is crucial for the ecological conservation and management planning of nature reserves and coastal salt marsh wetlands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助悦耳白山采纳,获得10
刚刚
windows完成签到,获得积分10
1秒前
csl发布了新的文献求助10
1秒前
1秒前
高大怀梦完成签到 ,获得积分10
2秒前
3秒前
Lucky完成签到 ,获得积分10
4秒前
虚掩的门发布了新的文献求助10
4秒前
Orange应助liziqi采纳,获得10
5秒前
5秒前
pluto应助十里长亭采纳,获得10
5秒前
6秒前
6秒前
7秒前
7秒前
穆穆穆穆关注了科研通微信公众号
8秒前
csl完成签到,获得积分10
8秒前
123456qi发布了新的文献求助30
9秒前
10秒前
王可发布了新的文献求助10
11秒前
天天快乐应助doctorbba采纳,获得10
11秒前
orixero应助GlockieZhao采纳,获得10
12秒前
K神发布了新的文献求助10
12秒前
Hello应助姜半兰采纳,获得10
12秒前
13秒前
冷酷蛋挞发布了新的文献求助10
13秒前
炙热雅琴发布了新的文献求助10
14秒前
xue完成签到,获得积分10
15秒前
15秒前
15秒前
情怀应助123456qi采纳,获得10
16秒前
jonghuang发布了新的文献求助10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
毛豆应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
18秒前
18秒前
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728134
求助须知:如何正确求助?哪些是违规求助? 3273299
关于积分的说明 9980758
捐赠科研通 2988689
什么是DOI,文献DOI怎么找? 1639727
邀请新用户注册赠送积分活动 778966
科研通“疑难数据库(出版商)”最低求助积分说明 747838