亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VOGTNet: Variational Optimization-Guided Two-Stage Network for Multispectral and Panchromatic Image Fusion

全色胶片 多光谱图像 人工智能 计算机科学 稳健性(进化) 图像分辨率 计算机视觉 噪音(视频) 图像融合 模式识别(心理学) 图像(数学) 生物化学 化学 基因
作者
Peng Wang,Zhongchen He,Bo Huang,Mauro Dalla Mura,Henry Leung,Jocelyn Chanussot
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:6
标识
DOI:10.1109/tnnls.2024.3409563
摘要

Multispectral image (MS) and panchromatic image (PAN) fusion, which is also named as multispectral pansharpening, aims to obtain MS with high spatial resolution and high spectral resolution. However, due to the usual neglect of noise and blur generated in the imaging and transmission phases of data during training, many deep learning (DL) pansharpening methods fail to perform on the dataset containing noise and blur. To tackle this problem, a variational optimization-guided two-stage network (VOGTNet) for multispectral pansharpening is proposed in this work, and the performance of variational optimization (VO)-based pansharpening methods relies on prior information and estimates of spatial-spectral degradation from the target image to other two original images. Concretely, we propose a dual-branch fusion network (DBFN) based on supervised learning and train it by using the datasets containing noise and blur to generate the prior fusion result as the prior information that can remove noise and blur in the initial stage. Subsequently, we exploit the estimated spectral response function (SRF) and point spread function (PSF) to simulate the process of spatial-spectral degradation, respectively, thereby making the prior fusion result and the adaptive recovery model (ARM) jointly perform unsupervised learning on the original dataset to restore more image details and results in the generation of the high-resolution MSs in the second stage. Experimental results indicate that the proposed VOGTNet improves pansharpening performance and shows strong robustness against noise and blur. Furthermore, the proposed VOGTNet can be extended to be a general pansharpening framework, which can improve the ability to resist noise and blur of other supervised learning-based pansharpening methods. The source code is available at https://github.com/HZC-1998/VOGTNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助盐植物采纳,获得10
20秒前
LAN完成签到,获得积分10
38秒前
39秒前
明理小土豆完成签到,获得积分10
48秒前
qpp完成签到,获得积分10
50秒前
Lucas应助归海浩阑采纳,获得30
1分钟前
1分钟前
蛋蛋发布了新的文献求助10
1分钟前
科目三应助蛋蛋采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
1分钟前
fffffffff发布了新的文献求助10
1分钟前
是hr不是hr完成签到,获得积分10
1分钟前
1分钟前
NattyPoe完成签到,获得积分10
1分钟前
Karol发布了新的文献求助10
2分钟前
fffffffff完成签到,获得积分20
2分钟前
fly完成签到 ,获得积分10
2分钟前
Zoe完成签到,获得积分10
2分钟前
英姑应助LJL采纳,获得10
2分钟前
jyy应助科研通管家采纳,获得20
3分钟前
CodeCraft应助meng采纳,获得10
3分钟前
4分钟前
LJL发布了新的文献求助10
4分钟前
4分钟前
meng发布了新的文献求助10
4分钟前
贪玩的电脑完成签到,获得积分10
4分钟前
meng完成签到,获得积分10
4分钟前
琪琪完成签到 ,获得积分10
4分钟前
5分钟前
asdfqaz完成签到,获得积分10
5分钟前
5分钟前
宁不惜发布了新的文献求助10
5分钟前
雨竹完成签到 ,获得积分10
5分钟前
爆米花应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
香蕉傲松发布了新的文献求助10
5分钟前
SciGPT应助宁不惜采纳,获得10
5分钟前
真君山山长完成签到,获得积分10
5分钟前
高分求助中
Востребованный временем 2500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Principles of Ultraviolet Photoelectron Spectroscopy 500
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3431147
求助须知:如何正确求助?哪些是违规求助? 3029432
关于积分的说明 8932904
捐赠科研通 2717137
什么是DOI,文献DOI怎么找? 1490479
科研通“疑难数据库(出版商)”最低求助积分说明 688849
邀请新用户注册赠送积分活动 684787