Optimization of multistage femtosecond laser drilling process using machine learning coupled with molecular dynamics

计算机科学 过程(计算) 吞吐量 工艺优化 飞秒 激光器 机器学习 人工智能 工程类 光学 物理 操作系统 电信 环境工程 无线
作者
Chenchong Wang,Zhen Zhang,Xueyong Jing,Zenan Yang,Wei Xu
出处
期刊:Optics and Laser Technology [Elsevier]
卷期号:156: 108442-108442 被引量:10
标识
DOI:10.1016/j.optlastec.2022.108442
摘要

• An efficient and low-cost optimization framework for femtosecond laser processing is proposed. • A new four-stage drilling process is proposed and optimized using the process optimization framework. • The optimized solutions to improve both drilling efficiency, recast layer and taper are obtained. Although femtosecond laser percussion drilling is widely used in many key industrial manufacturing fields, the quality of micro-holes limits its service performance. The traditional trial and error method and physical model are always time and cost consuming for process optimization. To address this problem, a process optimization framework coupled with molecular dynamics simulation, machine learning and a high-throughput optimization algorithm is proposed. The physical information obtained by molecular dynamics enriches the data set used to train machine learning model, and thus reducing the amount of data required. Machine learning can quickly and accurately establish the regression model between laser parameters and target machining performance, and high-throughput optimization algorithm is responsible for determining the optimal process in the process space. For femtosecond laser percussion drilling, a new four-stage drilling process is proposed and optimized using the coupling process optimization framework to solve efficiency and quality problems. Finally, the experimental validation for Ni-based single crystal superalloy verifies the reliability of the optimized process. The framework can be extended to other complex systems to realize process optimization with high efficiency and low cost in laser material processing technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alan发布了新的文献求助10
1秒前
3秒前
liuzr应助雨过天晴采纳,获得10
5秒前
乐乐应助满杯百香果采纳,获得10
5秒前
Jim luo完成签到,获得积分10
5秒前
6秒前
上官若男应助YA采纳,获得30
7秒前
共享精神应助伶俐板栗采纳,获得10
7秒前
张秋实发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
敲敲完成签到,获得积分10
11秒前
南宫碧发布了新的文献求助20
15秒前
李艳芬发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
敲敲发布了新的文献求助10
19秒前
王洵完成签到,获得积分10
20秒前
TQY发布了新的文献求助10
23秒前
栗子完成签到,获得积分10
23秒前
tsy完成签到 ,获得积分10
23秒前
24秒前
姜二完成签到 ,获得积分10
27秒前
wanghua完成签到 ,获得积分10
28秒前
南宫碧完成签到,获得积分10
30秒前
刘洋发布了新的文献求助10
30秒前
30秒前
22222发布了新的文献求助20
30秒前
32秒前
HR112发布了新的文献求助30
32秒前
兔兔sci完成签到,获得积分10
33秒前
36秒前
curtisness应助111采纳,获得10
38秒前
研友_VZG7GZ应助justin采纳,获得10
39秒前
123发布了新的文献求助10
39秒前
wanghua发布了新的文献求助10
41秒前
鲜艳的白开水完成签到,获得积分10
42秒前
美满的砖头完成签到 ,获得积分10
44秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267763
求助须知:如何正确求助?哪些是违规求助? 2907156
关于积分的说明 8340797
捐赠科研通 2577881
什么是DOI,文献DOI怎么找? 1401254
科研通“疑难数据库(出版商)”最低求助积分说明 655013
邀请新用户注册赠送积分活动 634023