Performance enhancement of MRI-based brain tumor classification using suitable segmentation method and deep learning-based ensemble algorithm

人工智能 计算机科学 分割 卷积神经网络 深度学习 脑瘤 磁共振成像 模式识别(心理学) 胶质瘤 放射科 医学 病理 癌症研究
作者
Gopal S. Tandel,Ashish Tiwari,O. G. Kakde
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:78: 104018-104018 被引量:25
标识
DOI:10.1016/j.bspc.2022.104018
摘要

Glioma is the most common brain tumor in humans. Accurate stage estimation of the tumor is essential for treatment planning. The biopsy is the gold standard method for this purpose. However, it is an invasive procedure, which can prove fatal for patients, if a tumor is present deep inside the brain. Therefore, a magnetic resonance imaging (MRI) based non-invasive method is proposed in this paper for low-grade glioma (LGG) versus high-grade glioma (HGG) classification. To maximize the above classification performance, five pre-trained convolutional neural networks (CNNs) such as AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50 are assembled using a majority voting mechanism. Segmentation methods require human intervention and additional computational efforts. It makes computer-aided diagnosis tools semi-automated. To analyze the performance effect of segmentation methods, three segmentation methods such as region of interest MRI segmentation (RSM) and skull-stripped MRI segmentation (SSM), and whole-brain MRI (WBM) (non-segmentation) data were compared using above mentioned algorithm. The highest classification accuracy of 99.06 ± 0.55 % was observed on the RSM data and the lowest accuracy of 98.43 ± 0.89 % was observed on the WSM data. However, only a 0.63 % improvement was found in the accuracy of the RSM data against the WBM data. This shows that deep learning models have an incredible ability to extract appropriate features from images. Furthermore, the proposed algorithm showed 2.85 %, 1.39 %, 1.26 %, 2.66 %, and 2.33 % improvement in the average accuracy of the above three datasets over the AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50 models, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助yrutao采纳,获得10
刚刚
喜欢皮卡丘的贾同学完成签到,获得积分10
2秒前
文汉完成签到,获得积分20
2秒前
壮观以松发布了新的文献求助10
3秒前
3秒前
Apriloooo完成签到,获得积分10
4秒前
xjp发布了新的文献求助10
4秒前
sgt发布了新的文献求助10
4秒前
4秒前
4秒前
蛋黄派完成签到,获得积分10
5秒前
慕青应助阿敬采纳,获得30
5秒前
Owen应助疯狂的虔采纳,获得10
5秒前
JudgeGoodwin完成签到,获得积分10
5秒前
烟花应助mermer采纳,获得10
6秒前
爆米花应助zzzx采纳,获得10
6秒前
6秒前
8秒前
adelalady完成签到,获得积分10
9秒前
Noneone110发布了新的文献求助10
9秒前
9秒前
桐桐应助Sg采纳,获得10
9秒前
Wiggins完成签到,获得积分10
10秒前
研友_VZG7GZ应助cc采纳,获得10
10秒前
10秒前
10秒前
无限早晨完成签到,获得积分10
10秒前
大力依珊发布了新的文献求助30
10秒前
11秒前
11秒前
sgt完成签到,获得积分10
11秒前
剑指东方是为谁应助PXX采纳,获得10
11秒前
yuan发布了新的文献求助10
11秒前
CodeCraft应助无奈的晴采纳,获得10
11秒前
12秒前
kk发布了新的文献求助10
12秒前
1561giou发布了新的文献求助10
13秒前
专注大门完成签到,获得积分10
13秒前
小太阳发布了新的文献求助10
13秒前
火星上云朵完成签到 ,获得积分10
14秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Oribatid mites in Burmese amber I. First record of the family Achipteriidae (Acariformes, Oribatida) in Cretaceous amber, with the description of a new species of Cerachipteria Grandjean, 1935 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725848
求助须知:如何正确求助?哪些是违规求助? 3270880
关于积分的说明 9969512
捐赠科研通 2986307
什么是DOI,文献DOI怎么找? 1638161
邀请新用户注册赠送积分活动 777987
科研通“疑难数据库(出版商)”最低求助积分说明 747365