3D Mesh classification and panoramic image segmentation using spherical vector networks with rotation-equivariant self-attention mechanism

等变映射 计算机科学 旋转(数学) 人工智能 投影(关系代数) 像素 集合(抽象数据类型) 计算机视觉 算法 模式识别(心理学) 数学 纯数学 程序设计语言
作者
Hao Chen,Jieyu Zhao
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:35 (5): 101546-101546 被引量:1
标识
DOI:10.1016/j.jksuci.2023.03.024
摘要

Spherical signals exist in many applications such as planetary data, lidar scanning and digitization of 3D objects, so we need models that can effectively process spherical data. When the spherical data is simply projected onto a two-dimensional plane and then convolutional neural networks (CNNs) are used, the performance of the previous algorithms that exist in the literature is poor due to the distortion caused by the projection and the invalid translational equivariance. We propose a spherical vector network with rotation-equivariant self-attention mechanism for part-whole relationships learning to avoid a certain degree of distortion in this paper. Specifically, we take first the spherical convolutional network as the front-end network to obtain primary vectors, then we achieve the part-whole relationships between vectors through proposed rotation-equivariant self-attention mechanism to obtain advanced vectors which can represent the existence probability of the entity and orientations. Experimental results show that the proposed method combined with the front-end network improves the 3D mesh classification accuracy of the front-end network by 9% when the training set is not rotated and the test set is rotated arbitrarily under the rigid ModelNet40 dataset. Similarly, the 3D mesh classification accuracy of the front-end network improves by 12.2% under the non-rigid SHREC15 dataset. In addition, our method is compared with the recent method in the spherical image semantic segmentation task, achieving an improvement of 2.2% in mean pixel accuracy and 1.3% in mean intersection over union.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjs0406发布了新的文献求助10
1秒前
1秒前
幻想家姬别情完成签到,获得积分10
3秒前
Nick完成签到,获得积分10
4秒前
ly发布了新的文献求助10
4秒前
呆呆要努力完成签到 ,获得积分10
5秒前
哈哈发布了新的文献求助10
6秒前
6秒前
7秒前
stokis03完成签到 ,获得积分0
7秒前
8秒前
8秒前
10秒前
10秒前
wjs0406完成签到,获得积分10
10秒前
10秒前
11秒前
王yp发布了新的文献求助10
11秒前
Singularity发布了新的文献求助10
11秒前
Haucicy完成签到 ,获得积分10
13秒前
14秒前
闪闪的傲蕾完成签到,获得积分20
14秒前
14秒前
15秒前
15秒前
淡淡完成签到,获得积分10
15秒前
华仔应助整齐凌萱采纳,获得10
16秒前
carbon-dots发布了新的文献求助10
16秒前
LM完成签到,获得积分10
18秒前
Accepted应助ydning33采纳,获得10
18秒前
华华华完成签到,获得积分10
18秒前
王yp完成签到,获得积分20
19秒前
虚心完成签到 ,获得积分10
20秒前
明理如凡完成签到,获得积分10
21秒前
zplea完成签到,获得积分10
22秒前
勇攀高峰的科研少女完成签到 ,获得积分10
23秒前
25秒前
28秒前
ding应助搞怪的流沙采纳,获得10
29秒前
ly完成签到,获得积分10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139135
求助须知:如何正确求助?哪些是违规求助? 2790050
关于积分的说明 7793436
捐赠科研通 2446426
什么是DOI,文献DOI怎么找? 1301124
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102