3D Mesh classification and panoramic image segmentation using spherical vector networks with rotation-equivariant self-attention mechanism

等变映射 计算机科学 旋转(数学) 人工智能 投影(关系代数) 像素 集合(抽象数据类型) 计算机视觉 算法 模式识别(心理学) 数学 程序设计语言 纯数学
作者
Hao Chen,Jieyu Zhao
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:35 (5): 101546-101546 被引量:1
标识
DOI:10.1016/j.jksuci.2023.03.024
摘要

Spherical signals exist in many applications such as planetary data, lidar scanning and digitization of 3D objects, so we need models that can effectively process spherical data. When the spherical data is simply projected onto a two-dimensional plane and then convolutional neural networks (CNNs) are used, the performance of the previous algorithms that exist in the literature is poor due to the distortion caused by the projection and the invalid translational equivariance. We propose a spherical vector network with rotation-equivariant self-attention mechanism for part-whole relationships learning to avoid a certain degree of distortion in this paper. Specifically, we take first the spherical convolutional network as the front-end network to obtain primary vectors, then we achieve the part-whole relationships between vectors through proposed rotation-equivariant self-attention mechanism to obtain advanced vectors which can represent the existence probability of the entity and orientations. Experimental results show that the proposed method combined with the front-end network improves the 3D mesh classification accuracy of the front-end network by 9% when the training set is not rotated and the test set is rotated arbitrarily under the rigid ModelNet40 dataset. Similarly, the 3D mesh classification accuracy of the front-end network improves by 12.2% under the non-rigid SHREC15 dataset. In addition, our method is compared with the recent method in the spherical image semantic segmentation task, achieving an improvement of 2.2% in mean pixel accuracy and 1.3% in mean intersection over union.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助满意的天蓝采纳,获得10
刚刚
1秒前
小萌新发布了新的文献求助10
1秒前
可可发布了新的文献求助10
3秒前
黄伊若完成签到 ,获得积分10
4秒前
4秒前
8秒前
晴偏好发布了新的文献求助10
9秒前
虾米发布了新的文献求助20
10秒前
11秒前
11秒前
11秒前
11秒前
Stroeve发布了新的文献求助10
12秒前
12秒前
希望天下0贩的0应助decademe采纳,获得10
12秒前
14秒前
wbgwudi完成签到,获得积分10
14秒前
斯文败类应助宇文青寒采纳,获得10
15秒前
16秒前
DNN发布了新的文献求助10
16秒前
热心市民小红花应助许初采纳,获得10
16秒前
林子发布了新的文献求助10
16秒前
健忘飞风完成签到,获得积分10
17秒前
17秒前
17秒前
超级的抽屉完成签到,获得积分10
19秒前
脑洞疼应助meng采纳,获得10
20秒前
落寞凌波发布了新的文献求助10
20秒前
liwenqiang发布了新的文献求助10
22秒前
在水一方应助林子采纳,获得10
22秒前
sumu应助yb采纳,获得10
22秒前
lydiaabc发布了新的文献求助10
23秒前
biosep完成签到,获得积分10
23秒前
JamesPei应助栗子采纳,获得10
24秒前
steel完成签到,获得积分20
26秒前
善学以致用应助蘑菇采纳,获得10
27秒前
852应助liwenqiang采纳,获得10
31秒前
研友_VZG7GZ应助crane采纳,获得30
31秒前
顺顺利利毕业完成签到 ,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954525
求助须知:如何正确求助?哪些是违规求助? 3500615
关于积分的说明 11100212
捐赠科研通 3231137
什么是DOI,文献DOI怎么找? 1786269
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719