材料科学
外延
氧化物
薄膜
电化学
化学工程
金属有机骨架
纳米技术
冶金
电极
图层(电子)
有机化学
物理化学
化学
吸附
工程类
作者
Xiaoting Zhang,Bin Luo,Avishek Banik,John Z. Tubbesing,Jay A. Switzer
标识
DOI:10.1021/acsami.2c22983
摘要
Metal–organic frameworks (MOFs) are an important class of crystalline porous materials with extensive chemical and structural merits. However, the fabrication of MOF thin films oriented along all crystallographic axes to achieve well-aligned nanopores and nanochannels with uniform apertures remains a challenge. Here, we achieved highly crystalline single-domain MOF thin films with the [111] out-of-plane orientation by electrochemical conversion of cuprous oxide. Copper(II)-benzene-1,3,5-tricarboxylate, Cu3(BTC)2 (referred to as Cu-BTC), is a well-known metal–organic open framework material with a cubic crystal system. Epitaxial Cu-BTC(111) thin films were manufactured by electrochemical oxidation of Cu2O(111) films electrodeposited on single-crystal Au(111). The Cu-BTC(111) shows an in-plane antiparallel relationship with the precursor Cu2O(111) with a −0.91% coincidence site lattice mismatch. A plausible mechanism was proposed for the electrochemical conversion of Cu2O into Cu-BTC, indicating formation of intermediate CuO, growth of Cu-BTC islands, and termination with coalesce into a dense film with a limiting thickness of about 740 nm. The Faradaic efficiency for the electrochemical conversion was 63%. In addition, epitaxial Cu-BTC(111) foils were fabricated by epitaxial lift-off following the electrochemical etching of residual Cu2O underneath the Cu-BTC. It was also demonstrated that Cu-BTC(111) films with two in-plane domains and textured Cu-BTC(111) films can be achieved on a large scale using electrodeposited Au/Si and Au-coated glass as low-cost substrates.
科研通智能强力驱动
Strongly Powered by AbleSci AI