前列腺癌
DU145型
癌症研究
癌症
前列腺
花生四烯酸
血管内皮生长因子
癌细胞
生物
医学
内科学
LNCaP公司
生物化学
酶
血管内皮生长因子受体
作者
Yong Tang,Man‐Tzu Wang,Yakun Chen,Dianer Yang,Mingxin Che,Kenneth V. Honn,Gregory D. Akers,Stephen R. Johnson,Daotai Nie
摘要
The enzyme 15-lipoxygenase-2 (15-LOX-2) utilizes arachidonic acid, a polyunsaturated fatty acid, to synthesize 15(S)-hydroxyeicosatetraenoic acid. Abundantly expressed in normal prostate epithelium but frequently suppressed in the cancerous tissues, 15-LOX-2 has been suggested as a functional suppressor of prostate cancer, but the mechanism(s) involved remains unknown. To study the functional role of 15-LOX-2 in prostate cancer, we expressed 15-LOX-2 as a fusion protein with GFP in DU145 and PC-3 cells and found that 15-LOX-2 increased cell cycle arrest at G0/G1 phase. When injected into athymic nu/nu mice, prostate cancer cells with 15-LOX-2 expression could still form palpable tumors without significant changes in tumorigenicity. But, the tumors with 15-LOX-2 expression grew significantly slower than those derived from vector controls and were kept dormant for a long period of time. Histological evaluation revealed an increase in cell death in tumors derived from prostate cancer cells with 15-LOX-2 expression, while in vitro cell culture conditions, no such increase in apoptosis was observed. Further studies found that the expression of vascular endothelial growth factor A (VEGF-A) was significantly reduced in prostate cancer cells with 15-LOX-2 expression restored. Our studies suggest that 15-LOX-2 suppresses VEGF gene expression and sustains tumor dormancy in prostate cancer. Loss of 15-LOX-2 functionalities, therefore, represents a key step for prostate cancer cells to exit from dormancy and embark on malignant progression in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI