Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes

生物 收敛演化 钠通道 适应(眼睛) 遗传学 河豚毒素 自然选择 进化生物学 约束(计算机辅助设计) 选择(遗传算法) 基因 生物物理学 系统发育学 神经科学 数学 计算机科学 化学 人工智能 有机化学 几何学
作者
Chris R. Feldman,Edmund D. Brodie,Edmund D. Brodie,Michael E. Pfrender
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:109 (12): 4556-4561 被引量:169
标识
DOI:10.1073/pnas.1113468109
摘要

Natural selection often produces convergent changes in unrelated lineages, but the degree to which such adaptations occur via predictable genetic paths is unknown. If only a limited subset of possible mutations is fixed in independent lineages, then it is clear that constraint in the production or function of molecular variants is an important determinant of adaptation. We demonstrate remarkably constrained convergence during the evolution of resistance to the lethal poison, tetrodotoxin, in six snake species representing three distinct lineages from around the globe. Resistance-conferring amino acid substitutions in a voltage-gated sodium channel, Na v 1.4, are clustered in only two regions of the protein, and a majority of the replacements are confined to the same three positions. The observed changes represent only a small fraction of the experimentally validated mutations known to increase Na v 1.4 resistance to tetrodotoxin. These results suggest that constraints resulting from functional tradeoffs between ion channel function and toxin resistance led to predictable patterns of evolutionary convergence at the molecular level. Our data are consistent with theoretical predictions and recent microcosm work that suggest a predictable path is followed during an adaptive walk along a mutational landscape, and that natural selection may be frequently constrained to produce similar genetic outcomes even when operating on independent lineages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助zhui采纳,获得10
刚刚
小黄应助清欢采纳,获得10
刚刚
蕾子完成签到,获得积分20
刚刚
敬老院N号应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
喜悦中道应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
健壮惋清完成签到 ,获得积分10
2秒前
桐桐应助佳佳采纳,获得10
2秒前
科研通AI5应助润润轩轩采纳,获得10
2秒前
2秒前
Orange应助w.h采纳,获得10
3秒前
稳重的安萱完成签到,获得积分10
3秒前
4秒前
Owen应助马静雨采纳,获得10
5秒前
5秒前
吴岳发布了新的文献求助10
6秒前
XHT完成签到,获得积分10
6秒前
Martin完成签到 ,获得积分10
7秒前
花花完成签到,获得积分10
7秒前
7秒前
Khr1stINK发布了新的文献求助10
8秒前
李繁蕊发布了新的文献求助10
8秒前
科研通AI2S应助灵巧荆采纳,获得10
10秒前
尼古拉斯二狗蛋完成签到,获得积分10
10秒前
SCI发布了新的文献求助10
10秒前
10秒前
10秒前
畅快的谷梦完成签到,获得积分10
10秒前
10秒前
猪猪hero发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794