Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT

降噪 成像体模 噪音(视频) 人工智能 图像分辨率 像素 计算机视觉 图像质量 投影(关系代数) 双边滤波器 非本地手段 滤波器(信号处理) 图像噪声 迭代重建 计算机科学 数学 核医学 算法 医学 图像(数学) 图像去噪
作者
Armando Manduca,Lifeng Yu,Joshua D. Trzasko,Natalia Khaylova,James M. Kofler,Cynthia M. McCollough,Joel G. Fletcher
出处
期刊:Medical Physics [Wiley]
卷期号:36 (11): 4911-4919 被引量:304
标识
DOI:10.1118/1.3232004
摘要

Purpose: To investigate a novel locally adaptive projection space denoising algorithm for low‐dose CT data. Methods: The denoising algorithm is based on bilateral filtering, which smooths values using a weighted average in a local neighborhood, with weights determined according to both spatial proximity and intensity similarity between the center pixel and the neighboring pixels. This filtering is locally adaptive and can preserve important edge information in the sinogram, thus maintaining high spatial resolution. A CT noise model that takes into account the bowtie filter and patient‐specific automatic exposure control effects is also incorporated into the denoising process. The authors evaluated the noise‐resolution properties of bilateral filtering incorporating such a CT noise model in phantom studies and preliminary patient studies with contrast‐enhanced abdominal CT exams. Results: On a thin wire phantom, the noise‐resolution properties were significantly improved with the denoising algorithm compared to commercial reconstruction kernels. The noise‐resolution properties on low‐dose (40 mA s) data after denoising approximated those of conventional reconstructions at twice the dose level. A separate contrast plate phantom showed improved depiction of low‐contrast plates with the denoising algorithm over conventional reconstructions when noise levels were matched. Similar improvement in noise‐resolution properties was found on CT colonography data and on five abdominal low‐energy (80 kV) CT exams. In each abdominal case, a board‐certified subspecialized radiologist rated the denoised 80 kV images markedly superior in image quality compared to the commercially available reconstructions, and denoising improved the image quality to the point where the 80 kV images alone were considered to be of diagnostic quality. Conclusions: The results demonstrate that bilateral filtering incorporating a CT noise model can achieve a significantly better noise‐resolution trade‐off than a series of commercial reconstruction kernels. This improvement in noise‐resolution properties can be used for improving image quality in CT and can be translated into substantial dose reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小W爱吃梨完成签到,获得积分10
1秒前
1秒前
栀清发布了新的文献求助10
1秒前
zss完成签到 ,获得积分10
2秒前
2秒前
张无忌发布了新的文献求助30
3秒前
4秒前
wocao完成签到 ,获得积分10
7秒前
卡卡发布了新的文献求助10
7秒前
8秒前
aa完成签到,获得积分10
8秒前
昵称什么的不重要啦完成签到 ,获得积分10
8秒前
甜筒完成签到 ,获得积分10
8秒前
兴奋的问旋应助Li猪猪采纳,获得10
9秒前
钰c完成签到,获得积分10
10秒前
心灵美的白易完成签到,获得积分10
10秒前
勤劳冰烟完成签到,获得积分10
12秒前
雨雾完成签到,获得积分10
12秒前
斯文败类应助凶狠的乐巧采纳,获得10
12秒前
12秒前
生言生语完成签到,获得积分10
12秒前
alick发布了新的文献求助10
13秒前
钰c发布了新的文献求助10
13秒前
Maggie完成签到 ,获得积分10
13秒前
四月是一只爱猫的羊完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
打打应助嘟嘟请让一让采纳,获得10
15秒前
专一完成签到,获得积分10
15秒前
Lucas应助九川采纳,获得10
15秒前
yl关闭了yl文献求助
15秒前
16秒前
研友_VZG7GZ应助韩莎莎采纳,获得10
16秒前
16秒前
丘比特应助卡卡采纳,获得10
17秒前
17秒前
毛毛发布了新的文献求助10
17秒前
ljx完成签到 ,获得积分10
17秒前
活力山蝶应助小白采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794