A new metaheuristic optimization based on K-means clustering algorithm and its application to structural damage identification

计算机科学 水准点(测量) 聚类分析 算法 元启发式 排名(信息检索) 威尔科克森符号秩检验 数学优化 质心 鉴定(生物学) 秩(图论) 机器学习 人工智能 数学 植物 生物 统计 大地测量学 曼惠特尼U检验 组合数学 地理
作者
Hoang-Le Minh,Thanh Sang-To,Magd Abdel Wahab,Thanh Cuong‐Le
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109189-109189 被引量:69
标识
DOI:10.1016/j.knosys.2022.109189
摘要

This paper develops a new metaheuristic optimization algorithm named K-means Optimizer (KO) to solve a wide range of optimization problems from numerical functions to real-design challenges. First, the centroid vectors of clustering regions are established at each iteration using K-means algorithm, then KO proposes two movement strategies to create a balance between the ability of exploitation and exploration. The decision on the movement strategy for exploration or exploitation at each iteration depends on a parameter that will be designed to recognize if each search agent is too long in the region visited with no self-improvement. To demonstrate the effectiveness and reliability of KO, twenty-three classical benchmark functions, CEC2005 and CEC2014 benchmark functions, are employed as a first example and compared with other algorithms. Then, three well-known engineering problems are also considered and their results are compared to the results obtained by the other algorithms. Finally, KO is applied to structural damage identification (SDI) problem of a complex 3D concrete structure including seven stories building having a 25.2 m total height. For this purpose, SAP2000 is used to solve the finite element (FE) model of this structure. Then, for the first time, we successfully developed a sub-program that allows two-way data exchange between SAP2000 and MATLAB through the Open Application Programming Interface (OAPI) library to update the FE model. From the results, we found that KO has the best performance for the considered benchmark functions based on the Wilcoxon rank-sum test and Friedman ranking test. The results obtained in this work have proved the effectiveness and reliability of KO in solving optimization problems, especially for SDI. Source codes of KO is publicly available at http://goldensolutionrs.com/codes.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lwei发布了新的文献求助10
刚刚
nanyus发布了新的文献求助10
刚刚
刚刚
别吃我的鱼完成签到,获得积分10
刚刚
Cecilia发布了新的文献求助10
1秒前
sxy0604发布了新的文献求助10
1秒前
1233完成签到,获得积分10
1秒前
科研通AI5应助小余采纳,获得30
1秒前
1秒前
天真迎南发布了新的文献求助10
1秒前
天天快乐应助yanziwu94采纳,获得10
2秒前
十八完成签到 ,获得积分10
2秒前
3秒前
akim发布了新的文献求助10
3秒前
Liu_Ci应助小景采纳,获得10
4秒前
Tzzl0226完成签到,获得积分20
4秒前
CO2完成签到,获得积分10
4秒前
小张完成签到,获得积分10
4秒前
英姑应助laola采纳,获得10
4秒前
香蕉觅云应助罗小小采纳,获得10
5秒前
制药小兵发布了新的文献求助20
5秒前
活泼莫英完成签到,获得积分10
6秒前
Kuripa发布了新的文献求助10
6秒前
7秒前
羽飞完成签到,获得积分10
7秒前
8秒前
Ava应助没有你不行采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
cocolu应助louge采纳,获得10
9秒前
斯文败类应助louge采纳,获得10
9秒前
羊羊爱吃羊羊完成签到 ,获得积分10
10秒前
12秒前
12秒前
Joe完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479168
求助须知:如何正确求助?哪些是违规求助? 3069899
关于积分的说明 9115835
捐赠科研通 2761682
什么是DOI,文献DOI怎么找? 1515415
邀请新用户注册赠送积分活动 700906
科研通“疑难数据库(出版商)”最低求助积分说明 699931