MSHGANMDA: Meta-Subgraphs Heterogeneous Graph Attention Network for miRNA-Disease Association Prediction

计算机科学 疾病 生物网络 荟萃分析 图形 精确性和召回率 小RNA 联想(心理学) 交叉验证 人工智能 计算生物学 机器学习 医学 生物 理论计算机科学 基因 遗传学 认识论 内科学 哲学 病理
作者
Shudong Wang,Fuyu Wang,Sibo Qiao,Zhuang Yu,Kuijie Zhang,Shanchen Pang,Robert Nowak,Zhihan Lv
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 4639-4648 被引量:11
标识
DOI:10.1109/jbhi.2022.3186534
摘要

MicroRNAs (miRNAs) influence several biological processes involved in human disease. Biological experiments for verifying the association between miRNA and disease are always costly in terms of both money and time. Although numerous biological experiments have identified multi-types of associations between miRNAs and diseases, existing computational methods are unable to sufficiently mine the knowledge in these associations to predict unknown associations. In this study, we innovatively propose a heterogeneous graph attention network model based on meta-subgraphs (MSHGANMDA) to predict the potential miRNA-disease associations. Firstly, we define five types of meta-subgraph from the known miRNA-disease associations. Then, we use meta-subgraph attention and meta-subgraph semantic attention to extract features of miRNA-disease pairs within and between these five meta-subgraphs, respectively. Finally, we apply a fully-connected layer (FCL) to predict the scores of unknown miRNA-disease associations and cross-entropy loss to train our model end-to-end. To evaluate the effectiveness of MSHGANMDA, we apply five-fold cross-validation to calculate the mean values of evaluation metrics Accuracy, Precision, Recall, and F1-score as 0.8595, 0.8601, 0.8596, and 0.8595, respectively. Experiments show that our model, which primarily utilizes multi-types of miRNA-disease association data, gets the greatest ROC-AUC value of 0.934 when compared to other state-of-the-art approaches. Furthermore, through case studies, we further confirm the effectiveness of MSHGANMDA in predicting unknown diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
熊猫小肿完成签到,获得积分10
2秒前
kai完成签到,获得积分10
4秒前
宋静发布了新的文献求助30
6秒前
7秒前
Yuan完成签到,获得积分10
10秒前
wanci应助小张同学采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
CHENG完成签到,获得积分10
12秒前
故事的小红花完成签到,获得积分10
12秒前
每天都要开心完成签到,获得积分10
13秒前
我是老大应助水菜泽子采纳,获得10
13秒前
希望天下0贩的0应助nick采纳,获得30
13秒前
liuda完成签到,获得积分10
14秒前
14秒前
奶黄包应助幽默翠桃采纳,获得10
15秒前
傻傻发布了新的文献求助10
15秒前
张张发布了新的文献求助30
16秒前
行舟完成签到 ,获得积分10
17秒前
文艺的金针菇完成签到 ,获得积分10
19秒前
bfr完成签到,获得积分10
19秒前
20秒前
卡比兽本兽完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
l玖应助紧张的毛衣采纳,获得10
23秒前
23秒前
Kevin发布了新的文献求助10
24秒前
刘一鸣发布了新的文献求助10
25秒前
咚咚咚完成签到,获得积分10
25秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993