MSHGANMDA: Meta-Subgraphs Heterogeneous Graph Attention Network for miRNA-Disease Association Prediction

计算机科学 疾病 生物网络 荟萃分析 图形 精确性和召回率 小RNA 联想(心理学) 交叉验证 人工智能 计算生物学 机器学习 医学 生物 理论计算机科学 基因 遗传学 认识论 内科学 哲学 病理
作者
Shudong Wang,Fuyu Wang,Sibo Qiao,Zhuang Yu,Kuijie Zhang,Shanchen Pang,Robert Nowak,Zhihan Lv
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 4639-4648 被引量:7
标识
DOI:10.1109/jbhi.2022.3186534
摘要

MicroRNAs (miRNAs) influence several biological processes involved in human disease. Biological experiments for verifying the association between miRNA and disease are always costly in terms of both money and time. Although numerous biological experiments have identified multi-types of associations between miRNAs and diseases, existing computational methods are unable to sufficiently mine the knowledge in these associations to predict unknown associations. In this study, we innovatively propose a heterogeneous graph attention network model based on meta-subgraphs (MSHGANMDA) to predict the potential miRNA-disease associations. Firstly, we define five types of meta-subgraph from the known miRNA-disease associations. Then, we use meta-subgraph attention and meta-subgraph semantic attention to extract features of miRNA-disease pairs within and between these five meta-subgraphs, respectively. Finally, we apply a fully-connected layer (FCL) to predict the scores of unknown miRNA-disease associations and cross-entropy loss to train our model end-to-end. To evaluate the effectiveness of MSHGANMDA, we apply five-fold cross-validation to calculate the mean values of evaluation metrics Accuracy, Precision, Recall, and F1-score as 0.8595, 0.8601, 0.8596, and 0.8595, respectively. Experiments show that our model, which primarily utilizes multi-types of miRNA-disease association data, gets the greatest ROC-AUC value of 0.934 when compared to other state-of-the-art approaches. Furthermore, through case studies, we further confirm the effectiveness of MSHGANMDA in predicting unknown diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
忧郁的菠萝完成签到,获得积分10
刚刚
woxue发布了新的文献求助10
1秒前
1秒前
2秒前
abc123完成签到,获得积分10
2秒前
eLiauK完成签到,获得积分10
4秒前
4秒前
dannnnn完成签到,获得积分10
5秒前
醉熏的伊完成签到,获得积分10
6秒前
July完成签到,获得积分10
6秒前
kk完成签到,获得积分20
7秒前
彭于晏应助早日毕业采纳,获得10
7秒前
香蕉觅云应助摇滚咸鱼采纳,获得10
7秒前
Hello应助霁星河采纳,获得10
7秒前
FashionBoy应助ericzhouxx采纳,获得10
7秒前
WEDNES应助biubiubiu采纳,获得10
8秒前
乐乐应助橘海万青采纳,获得30
9秒前
舒先生完成签到,获得积分10
9秒前
REN应助sanyiwen采纳,获得20
9秒前
flywee完成签到,获得积分10
9秒前
9秒前
橘子发布了新的文献求助10
9秒前
圆粉条完成签到 ,获得积分10
10秒前
Hello应助任小九采纳,获得10
10秒前
10秒前
步步高完成签到 ,获得积分10
12秒前
JamesPei应助阳光水壶采纳,获得10
12秒前
德尔塔完成签到,获得积分10
12秒前
whatever应助zx采纳,获得20
12秒前
小星完成签到 ,获得积分10
13秒前
13秒前
13秒前
洁净荣轩发布了新的文献求助10
13秒前
零一8240完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
16秒前
年轻的乐驹完成签到,获得积分20
16秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122411
求助须知:如何正确求助?哪些是违规求助? 2772885
关于积分的说明 7714973
捐赠科研通 2428396
什么是DOI,文献DOI怎么找? 1289747
科研通“疑难数据库(出版商)”最低求助积分说明 621504
版权声明 600183