In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors

材料科学 荧光寿命成像显微镜 临床前影像学 自体荧光 量子点 显微镜 荧光 共焦 分子成像 光学 共焦显微镜 显微镜 体内 散射 光电子学 荧光显微镜 激发 穿透深度 探测器 拉曼散射 近红外光谱 光散射 光谱成像 纳米线 波长 光子上转换 纳米技术 医学影像学 红外线的
作者
Feifei Wang,Fuqiang Ren,Zhuoran Ma,Liangqiong Qu,Ronan Gourgues,C. F. Xu,Ani Baghdasaryan,Jiachen Li,Iman Esmaeil Zadeh,Johannes W. N. Los,Andreas Fognini,Jessie Qin-Dregely,Hongjie Dai
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:17 (6): 653-660 被引量:218
标识
DOI:10.1038/s41565-022-01130-3
摘要

Light scattering by biological tissues sets a limit to the penetration depth of high-resolution optical microscopy imaging of live mammals in vivo. An effective approach to reduce light scattering and increase imaging depth is to extend the excitation and emission wavelengths to the second near-infrared window (NIR-II) at >1,000 nm, also called the short-wavelength infrared window. Here we show biocompatible core-shell lead sulfide/cadmium sulfide quantum dots emitting at ~1,880 nm and superconducting nanowire single-photon detectors for single-photon detection up to 2,000 nm, enabling a one-photon excitation fluorescence imaging window in the 1,700-2,000 nm (NIR-IIc) range with 1,650 nm excitation-the longest one-photon excitation and emission for in vivo mouse imaging so far. Confocal fluorescence imaging in NIR-IIc reached an imaging depth of ~1,100 μm through an intact mouse head, and enabled non-invasive cellular-resolution imaging in the inguinal lymph nodes of mice without any surgery. We achieve in vivo molecular imaging of high endothelial venules with diameters as small as ~6.6 μm, as well as CD169 + macrophages and CD3 + T cells in the lymph nodes, opening the possibility of non-invasive intravital imaging of immune trafficking in lymph nodes at the single-cell/vessel-level longitudinally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
feb完成签到,获得积分10
4秒前
南无三完成签到,获得积分10
5秒前
5秒前
好运连连发布了新的文献求助10
7秒前
zhou完成签到,获得积分10
7秒前
8秒前
张大旺发布了新的文献求助10
8秒前
13秒前
WZY完成签到,获得积分10
13秒前
15秒前
苏远山爱吃西红柿完成签到,获得积分10
16秒前
小小美少女完成签到 ,获得积分10
17秒前
17秒前
碧空蝉完成签到,获得积分10
20秒前
21秒前
NEKO发布了新的文献求助30
23秒前
24秒前
EKKO完成签到,获得积分10
25秒前
25秒前
谨慎的CZ完成签到 ,获得积分10
27秒前
28秒前
yushiolo发布了新的文献求助10
29秒前
杨紫宸发布了新的文献求助10
30秒前
香菜完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
云朵发布了新的文献求助30
32秒前
33秒前
安白枫发布了新的文献求助10
33秒前
34秒前
34秒前
Shu舒发布了新的文献求助10
35秒前
37秒前
mufcyang完成签到,获得积分10
37秒前
杨紫宸完成签到,获得积分10
41秒前
42秒前
英姑应助顶天立地采纳,获得30
44秒前
含蓄听南完成签到 ,获得积分10
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688879
关于积分的说明 14856774
捐赠科研通 4696188
什么是DOI,文献DOI怎么找? 2541118
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851