A Systematic Review of Artificial Intelligence and Machine Learning Applications to Inflammatory Bowel Disease, with Practical Guidelines for Interpretation

机器学习 人工智能 医学 疾病 口译(哲学) 炎症性肠病 克罗恩病 炎症性肠病 计算机科学 重症监护医学 病理 程序设计语言
作者
Imogen S Stafford,Mark Gosink,Enrico Mossotto,Sarah Ennis,Manfred Hauben
出处
期刊:Inflammatory Bowel Diseases [Oxford University Press]
卷期号:28 (10): 1573-1583 被引量:21
标识
DOI:10.1093/ibd/izac115
摘要

Abstract Background Inflammatory bowel disease (IBD) is a gastrointestinal chronic disease with an unpredictable disease course. Computational methods such as machine learning (ML) have the potential to stratify IBD patients for the provision of individualized care. The use of ML methods for IBD was surveyed, with an additional focus on how the field has changed over time. Methods On May 6, 2021, a systematic review was conducted through a search of MEDLINE and Embase databases, with the search structure (“machine learning” OR “artificial intelligence”) AND (“Crohn* Disease” OR “Ulcerative Colitis” OR “Inflammatory Bowel Disease”). Exclusion criteria included studies not written in English, no human patient data, publication before 2001, studies that were not peer reviewed, nonautoimmune disease comorbidity research, and record types that were not primary research. Results Seventy-eight (of 409) records met the inclusion criteria. Random forest methods were most prevalent, and there was an increase in neural networks, mainly applied to imaging data sets. The main applications of ML to clinical tasks were diagnosis (18 of 78), disease course (22 of 78), and disease severity (16 of 78). The median sample size was 263. Clinical and microbiome-related data sets were most popular. Five percent of studies used an external data set after training and testing for additional model validation. Discussion Availability of longitudinal and deep phenotyping data could lead to better modeling. Machine learning pipelines that consider imbalanced data and that feature selection only on training data will generate more generalizable models. Machine learning models are increasingly being applied to more complex clinical tasks for specific phenotypes, indicating progress towards personalized medicine for IBD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈醉柳完成签到,获得积分10
刚刚
1秒前
杳鸢应助艾森豪威尔采纳,获得20
4秒前
冷傲书萱发布了新的文献求助10
4秒前
清秋完成签到,获得积分10
4秒前
siso发布了新的文献求助10
6秒前
6秒前
8秒前
Medneuron发布了新的文献求助10
8秒前
懦弱的乐蕊完成签到 ,获得积分10
8秒前
落寞万言发布了新的文献求助30
11秒前
可爱的函函应助蓝胖子采纳,获得10
12秒前
CYJ-2完成签到,获得积分10
13秒前
14秒前
打打应助MuNan采纳,获得10
15秒前
18秒前
wsh发布了新的文献求助10
20秒前
luoyn发布了新的文献求助10
20秒前
Shabby0-0完成签到,获得积分10
20秒前
酷波er应助wwdd采纳,获得10
21秒前
雨洋发布了新的文献求助10
21秒前
25秒前
25秒前
涛哥来科研完成签到 ,获得积分10
26秒前
26秒前
小二郎应助落寞万言采纳,获得10
28秒前
科研通AI2S应助冷傲书萱采纳,获得10
28秒前
TING完成签到,获得积分10
30秒前
Y哦莫哦莫发布了新的文献求助10
30秒前
30秒前
31秒前
Chochee完成签到,获得积分10
33秒前
李健的小迷弟应助maomaoqiu采纳,获得10
33秒前
Jes完成签到 ,获得积分10
35秒前
小宝发布了新的文献求助20
35秒前
DE2022发布了新的文献求助20
35秒前
36秒前
斯文败类应助Y哦莫哦莫采纳,获得10
38秒前
自渡完成签到,获得积分20
38秒前
39秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229292
求助须知:如何正确求助?哪些是违规求助? 2877036
关于积分的说明 8197538
捐赠科研通 2544353
什么是DOI,文献DOI怎么找? 1374356
科研通“疑难数据库(出版商)”最低求助积分说明 646935
邀请新用户注册赠送积分活动 621742