Suppressed shuttle effect and Self-Discharge of redox electrochemical capacitors using biphasic electrolyte with a Liquid-Liquid interface

氧化还原 电解质 化学 电化学 自放电 离子液体 下降(电信) 化学工程 无机化学 电极 有机化学 电气工程 催化作用 物理化学 工程类
作者
Wei Yang,Qiankun Han,Wenshi Li,Maosheng Wu,Jing Yao,Man Zhao,Xianmao Lu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:448: 137731-137731 被引量:10
标识
DOI:10.1016/j.cej.2022.137731
摘要

Redox-enhanced electrochemical capacitors (redox ECs) can boost the energy density of conventional ECs by introducing soluble redox species in the electrolyte to gain additional capacity via faradaic reactions. The shuttle effect of the added redox species such as polyiodides, however, leads to rapid self-discharge of redox ECs and severely limits their capability for long-term energy storage. Herein, we propose an ionic liquid (IL)-based aqueous biphasic system (ABS) as the electrolyte of iodide-based redox ECs to suppress the self-discharge. Based on molecular dynamics (MD) simulation and mechanistic analysis, we reveal that the liquid–liquid interface in the ABS blocks the diffusion of polyiodides and leads to reduced self-discharge rate. Specifically, EC cells with ABS electrolyte deliver much lower open circuit voltage (OCV) drop (0.7 V) and better energy retention (>32%) in 24 h than that of cells with conventional iodide-based electrolyte (OCV drop: 1.6 V, energy retention: 0%). This strategy is also successfully extended to the fabrication of ABS-based hydrogel electrolyte for solid-state redox ECs with low self-discharge rate. The results of this work not only provide a mechanistic approach to elucidating the effect of redox couples on the self-discharge of redox ECs, but also demonstrate an effective way of mitigating the shuttle effect via liquid–liquid interface in a biphasic electrolyte to reduce self-discharge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海梓发布了新的文献求助10
刚刚
可爱的函函应助111采纳,获得10
1秒前
1秒前
景清完成签到,获得积分10
1秒前
彭于晏应助王小明采纳,获得30
1秒前
橘络发布了新的文献求助10
2秒前
追梦发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
HEIKU应助啊怪采纳,获得10
4秒前
ceeray23应助啊怪采纳,获得10
4秒前
lanyun发布了新的文献求助10
4秒前
打打应助林菲菲采纳,获得10
6秒前
玖月发布了新的文献求助10
6秒前
迪迦发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
xinchi发布了新的文献求助10
9秒前
追梦完成签到,获得积分10
9秒前
10秒前
pharrah应助may采纳,获得10
11秒前
小马甲应助xmhxpz采纳,获得10
11秒前
13秒前
李爱国应助乐乐乐乐乐乐采纳,获得30
13秒前
lanyun完成签到,获得积分10
13秒前
m123发布了新的文献求助10
14秒前
111发布了新的文献求助10
15秒前
sandra发布了新的文献求助10
16秒前
li发布了新的文献求助10
16秒前
leowu应助fighting采纳,获得10
17秒前
17秒前
17秒前
17秒前
20秒前
miketyson完成签到,获得积分10
21秒前
21秒前
小蘑菇应助m123采纳,获得10
23秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589