Integrating a mixed‐cell cellular automata model and Bayesian belief network for ecosystem services optimization to guide ecological restoration and conservation

生态系统服务 计算机科学 钥匙(锁) 生态系统 环境资源管理 恢复生态学 细胞自动机 贝叶斯网络 服务(商务) 环境科学 生态系统管理 生态学 业务 人工智能 计算机安全 生物 营销
作者
Shuang Zhou,Li Peng
出处
期刊:Land Degradation & Development [Wiley]
卷期号:33 (10): 1579-1595 被引量:18
标识
DOI:10.1002/ldr.4218
摘要

Abstract An ecosystem is a complex system with a large number of dynamic variables, which poses challenges to the optimization of ecosystem services. However, traditional ecosystem services optimization methods do not take into account the complexity and uncertainty of variables. To address this complexity and uncertainty, we propose an innovative approach using a mixed‐cell cellular automata (MCCA) model and a Bayesian belief network (BBN) model for ecosystem service optimization. This approach was applied to the southern region of Sichuan Province, China, using an existing dataset to simulate land use patterns and predict ecosystem services in 2035 under different development scenarios. To achieve ecological restoration and conservation, we also determined the key factor combinations and key ecological regions at various ecosystem service levels. Results showed that ecological protection scenario design has important significance as a reference for maintaining and ameliorating regional ecosystem services and functions. We also identified that the highest level of ecosystem services was mainly located in the areas with the highest net primary productivity (NPP), the highest slope, the highest forestland area, and low ET. According to these findings, some suggestions for ecological restoration and conservation in key regions were put forward. This approach fully considers the uncertainty of factors; therefore, it can be used as an effective tool for designing ecosystem management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半夏应助hahahahh采纳,获得30
刚刚
刚刚
刚刚
刚刚
考博圣体发布了新的文献求助10
刚刚
senli2018发布了新的文献求助10
1秒前
1秒前
JT完成签到,获得积分10
1秒前
饭胖胖发布了新的文献求助10
2秒前
老格发布了新的文献求助10
2秒前
killer完成签到,获得积分20
3秒前
安的沛白发布了新的文献求助10
3秒前
4秒前
4秒前
ding应助追忆采纳,获得10
4秒前
5秒前
整齐的乐驹完成签到,获得积分10
5秒前
完美世界应助秀儿采纳,获得10
5秒前
6秒前
Nathan发布了新的文献求助10
7秒前
7秒前
阿道完成签到,获得积分10
8秒前
8秒前
Lucas应助翟佳宁采纳,获得10
8秒前
酷波er应助hhk采纳,获得10
8秒前
汉堡包应助saikun采纳,获得10
8秒前
CipherSage应助py999采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
NexusExplorer应助zy采纳,获得10
10秒前
qqshown发布了新的文献求助10
10秒前
11秒前
星残月影完成签到,获得积分20
12秒前
cake发布了新的文献求助10
12秒前
zzz发布了新的文献求助10
12秒前
13秒前
李爱国应助www采纳,获得10
13秒前
12发布了新的文献求助10
13秒前
直率冷之完成签到,获得积分20
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675283
求助须知:如何正确求助?哪些是违规求助? 4944946
关于积分的说明 15152504
捐赠科研通 4834477
什么是DOI,文献DOI怎么找? 2589502
邀请新用户注册赠送积分活动 1543183
关于科研通互助平台的介绍 1501079