Integrating a mixed‐cell cellular automata model and Bayesian belief network for ecosystem services optimization to guide ecological restoration and conservation

生态系统服务 计算机科学 钥匙(锁) 生态系统 环境资源管理 恢复生态学 细胞自动机 贝叶斯网络 服务(商务) 环境科学 生态系统管理 生态学 业务 人工智能 计算机安全 营销 生物
作者
Shuang Zhou,Li Peng
出处
期刊:Land Degradation & Development [Wiley]
卷期号:33 (10): 1579-1595 被引量:17
标识
DOI:10.1002/ldr.4218
摘要

Abstract An ecosystem is a complex system with a large number of dynamic variables, which poses challenges to the optimization of ecosystem services. However, traditional ecosystem services optimization methods do not take into account the complexity and uncertainty of variables. To address this complexity and uncertainty, we propose an innovative approach using a mixed‐cell cellular automata (MCCA) model and a Bayesian belief network (BBN) model for ecosystem service optimization. This approach was applied to the southern region of Sichuan Province, China, using an existing dataset to simulate land use patterns and predict ecosystem services in 2035 under different development scenarios. To achieve ecological restoration and conservation, we also determined the key factor combinations and key ecological regions at various ecosystem service levels. Results showed that ecological protection scenario design has important significance as a reference for maintaining and ameliorating regional ecosystem services and functions. We also identified that the highest level of ecosystem services was mainly located in the areas with the highest net primary productivity (NPP), the highest slope, the highest forestland area, and low ET. According to these findings, some suggestions for ecological restoration and conservation in key regions were put forward. This approach fully considers the uncertainty of factors; therefore, it can be used as an effective tool for designing ecosystem management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mao12wang完成签到,获得积分10
刚刚
852应助彗星入梦采纳,获得10
1秒前
long完成签到,获得积分10
1秒前
1秒前
majiko发布了新的文献求助10
2秒前
yu发布了新的文献求助10
2秒前
3秒前
CongYalong完成签到,获得积分10
3秒前
科研麻瓜完成签到,获得积分10
3秒前
弓纪世发布了新的文献求助10
3秒前
科目三应助令人秃头采纳,获得20
4秒前
5秒前
Ry发布了新的文献求助20
5秒前
Lili完成签到,获得积分10
5秒前
JamesPei应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得30
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
水水应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
wyq完成签到 ,获得积分10
7秒前
传奇3应助Kate采纳,获得10
8秒前
废废言完成签到,获得积分10
8秒前
今后应助陈有游采纳,获得10
9秒前
李雪发布了新的文献求助10
9秒前
咪路发布了新的文献求助10
9秒前
元海云完成签到,获得积分10
10秒前
11秒前
古月发布了新的文献求助10
11秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600