Integrating a mixed‐cell cellular automata model and Bayesian belief network for ecosystem services optimization to guide ecological restoration and conservation

生态系统服务 计算机科学 钥匙(锁) 生态系统 环境资源管理 恢复生态学 细胞自动机 贝叶斯网络 服务(商务) 环境科学 生态系统管理 生态学 业务 人工智能 计算机安全 生物 营销
作者
Shuang Zhou,Li Peng
出处
期刊:Land Degradation & Development [Wiley]
卷期号:33 (10): 1579-1595 被引量:16
标识
DOI:10.1002/ldr.4218
摘要

Abstract An ecosystem is a complex system with a large number of dynamic variables, which poses challenges to the optimization of ecosystem services. However, traditional ecosystem services optimization methods do not take into account the complexity and uncertainty of variables. To address this complexity and uncertainty, we propose an innovative approach using a mixed‐cell cellular automata (MCCA) model and a Bayesian belief network (BBN) model for ecosystem service optimization. This approach was applied to the southern region of Sichuan Province, China, using an existing dataset to simulate land use patterns and predict ecosystem services in 2035 under different development scenarios. To achieve ecological restoration and conservation, we also determined the key factor combinations and key ecological regions at various ecosystem service levels. Results showed that ecological protection scenario design has important significance as a reference for maintaining and ameliorating regional ecosystem services and functions. We also identified that the highest level of ecosystem services was mainly located in the areas with the highest net primary productivity (NPP), the highest slope, the highest forestland area, and low ET. According to these findings, some suggestions for ecological restoration and conservation in key regions were put forward. This approach fully considers the uncertainty of factors; therefore, it can be used as an effective tool for designing ecosystem management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
只道寻常完成签到,获得积分10
1秒前
fleee完成签到,获得积分10
1秒前
swsx1317发布了新的文献求助10
1秒前
2秒前
雪白涵山完成签到,获得积分20
2秒前
liao完成签到 ,获得积分10
2秒前
hu970发布了新的文献求助30
2秒前
科研小白发布了新的文献求助20
3秒前
SciGPT应助白小白采纳,获得10
3秒前
shuxi完成签到,获得积分10
4秒前
liuwei发布了新的文献求助10
4秒前
yxf完成签到,获得积分20
4秒前
5秒前
十一完成签到,获得积分10
5秒前
5秒前
穆萝完成签到,获得积分10
5秒前
Jenny应助Eva采纳,获得10
5秒前
bkagyin应助17808352679采纳,获得10
5秒前
俭朴夜雪发布了新的文献求助10
6秒前
6秒前
林上草应助123采纳,获得10
6秒前
科目三应助AoiNG采纳,获得10
6秒前
7秒前
orixero应助雪白涵山采纳,获得20
7秒前
123发布了新的文献求助10
8秒前
ajing完成签到,获得积分10
8秒前
537完成签到,获得积分10
8秒前
8秒前
9秒前
清醒的ZY完成签到,获得积分10
9秒前
yxf发布了新的文献求助10
10秒前
大个应助叫滚滚采纳,获得10
10秒前
10秒前
Rui发布了新的文献求助10
11秒前
11秒前
China发布了新的文献求助10
11秒前
11秒前
ryze完成签到,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762