Integrating a mixed‐cell cellular automata model and Bayesian belief network for ecosystem services optimization to guide ecological restoration and conservation

生态系统服务 计算机科学 钥匙(锁) 生态系统 环境资源管理 恢复生态学 细胞自动机 贝叶斯网络 服务(商务) 环境科学 生态系统管理 生态学 业务 人工智能 计算机安全 营销 生物
作者
Shuang Zhou,Li Peng
出处
期刊:Land Degradation & Development [Wiley]
卷期号:33 (10): 1579-1595 被引量:18
标识
DOI:10.1002/ldr.4218
摘要

Abstract An ecosystem is a complex system with a large number of dynamic variables, which poses challenges to the optimization of ecosystem services. However, traditional ecosystem services optimization methods do not take into account the complexity and uncertainty of variables. To address this complexity and uncertainty, we propose an innovative approach using a mixed‐cell cellular automata (MCCA) model and a Bayesian belief network (BBN) model for ecosystem service optimization. This approach was applied to the southern region of Sichuan Province, China, using an existing dataset to simulate land use patterns and predict ecosystem services in 2035 under different development scenarios. To achieve ecological restoration and conservation, we also determined the key factor combinations and key ecological regions at various ecosystem service levels. Results showed that ecological protection scenario design has important significance as a reference for maintaining and ameliorating regional ecosystem services and functions. We also identified that the highest level of ecosystem services was mainly located in the areas with the highest net primary productivity (NPP), the highest slope, the highest forestland area, and low ET. According to these findings, some suggestions for ecological restoration and conservation in key regions were put forward. This approach fully considers the uncertainty of factors; therefore, it can be used as an effective tool for designing ecosystem management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jared应助玩命的芝麻采纳,获得10
刚刚
文静季节完成签到,获得积分20
刚刚
刚刚
吉吉完成签到,获得积分10
1秒前
HEYUYU发布了新的文献求助10
1秒前
moonpie关注了科研通微信公众号
2秒前
2秒前
2秒前
专注的曼卉发布了新的文献求助100
2秒前
haimianbaobao发布了新的文献求助10
2秒前
3秒前
3秒前
123发布了新的文献求助10
4秒前
4秒前
科目三应助Khr1stINK采纳,获得10
4秒前
4秒前
4秒前
考博圣体完成签到,获得积分10
5秒前
gf完成签到,获得积分10
5秒前
Tsuki完成签到 ,获得积分10
5秒前
小马甲应助平淡的白云采纳,获得10
5秒前
冷月寒寒大魔王完成签到,获得积分20
5秒前
5秒前
今后应助雪松采纳,获得10
6秒前
6秒前
鲸鱼发布了新的文献求助10
6秒前
6秒前
爆米花应助干净冬莲采纳,获得10
6秒前
6秒前
7秒前
7秒前
quan发布了新的文献求助10
7秒前
叮当完成签到,获得积分20
7秒前
7秒前
8秒前
云野华完成签到,获得积分10
8秒前
ysd完成签到,获得积分10
8秒前
emmaguo713完成签到,获得积分10
8秒前
8秒前
诚心寄灵发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482