Integrating a mixed‐cell cellular automata model and Bayesian belief network for ecosystem services optimization to guide ecological restoration and conservation

生态系统服务 计算机科学 钥匙(锁) 生态系统 环境资源管理 恢复生态学 细胞自动机 贝叶斯网络 服务(商务) 环境科学 生态系统管理 生态学 业务 人工智能 计算机安全 营销 生物
作者
Shuang Zhou,Li Peng
出处
期刊:Land Degradation & Development [Wiley]
卷期号:33 (10): 1579-1595 被引量:18
标识
DOI:10.1002/ldr.4218
摘要

Abstract An ecosystem is a complex system with a large number of dynamic variables, which poses challenges to the optimization of ecosystem services. However, traditional ecosystem services optimization methods do not take into account the complexity and uncertainty of variables. To address this complexity and uncertainty, we propose an innovative approach using a mixed‐cell cellular automata (MCCA) model and a Bayesian belief network (BBN) model for ecosystem service optimization. This approach was applied to the southern region of Sichuan Province, China, using an existing dataset to simulate land use patterns and predict ecosystem services in 2035 under different development scenarios. To achieve ecological restoration and conservation, we also determined the key factor combinations and key ecological regions at various ecosystem service levels. Results showed that ecological protection scenario design has important significance as a reference for maintaining and ameliorating regional ecosystem services and functions. We also identified that the highest level of ecosystem services was mainly located in the areas with the highest net primary productivity (NPP), the highest slope, the highest forestland area, and low ET. According to these findings, some suggestions for ecological restoration and conservation in key regions were put forward. This approach fully considers the uncertainty of factors; therefore, it can be used as an effective tool for designing ecosystem management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
伊伊完成签到,获得积分10
1秒前
2秒前
3秒前
Hinsen发布了新的文献求助10
3秒前
可爱的日记本完成签到 ,获得积分10
5秒前
能干的小霸王关注了科研通微信公众号
5秒前
5秒前
等等有力气完成签到,获得积分10
8秒前
奋斗金连发布了新的文献求助10
9秒前
脑洞疼应助www111采纳,获得10
9秒前
dichloro发布了新的文献求助10
9秒前
10秒前
48662完成签到,获得积分10
10秒前
10秒前
DrKe完成签到,获得积分10
11秒前
英姑应助无私的砖头采纳,获得10
12秒前
12秒前
13秒前
rain完成签到,获得积分10
13秒前
情怀应助橘子采纳,获得10
13秒前
优秀灵竹发布了新的文献求助10
15秒前
15秒前
JamesPei应助rerere采纳,获得10
16秒前
追寻梦易完成签到,获得积分10
16秒前
田様应助kitiker采纳,获得10
17秒前
白文博发布了新的文献求助10
17秒前
舒适沛儿发布了新的文献求助10
17秒前
17秒前
Hinsen完成签到,获得积分10
17秒前
xxl完成签到,获得积分20
18秒前
18秒前
忧郁凡灵发布了新的文献求助10
19秒前
hcf_yicheng完成签到,获得积分10
19秒前
xrf完成签到,获得积分10
20秒前
21秒前
科研通AI6应助哈桑士采纳,获得10
22秒前
23秒前
好不了一丶完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707