A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging

高光谱成像 计算机科学 人工智能 医学影像学 光谱成像 计算机视觉 深度学习 模式识别(心理学) 遥感 地质学
作者
Jingang Zhang,Runmu Su,Qiang Fu,Wenqi Ren,Felix Heide,Yunfeng Nie
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:73
标识
DOI:10.1038/s41598-022-16223-1
摘要

Hyperspectral imaging enables many versatile applications for its competence in capturing abundant spatial and spectral information, which is crucial for identifying substances. However, the devices for acquiring hyperspectral images are typically expensive and very complicated, hindering the promotion of their application in consumer electronics, such as daily food inspection and point-of-care medical screening, etc. Recently, many computational spectral imaging methods have been proposed by directly reconstructing the hyperspectral information from widely available RGB images. These reconstruction methods can exclude the usage of burdensome spectral camera hardware while keeping a high spectral resolution and imaging performance. We present a thorough investigation of more than 25 state-of-the-art spectral reconstruction methods which are categorized as prior-based and data-driven methods. Simulations on open-source datasets show that prior-based methods are more suitable for rare data situations, while data-driven methods can unleash the full potential of deep learning in big data cases. We have identified current challenges faced by those methods (e.g., loss function, spectral accuracy, data generalization) and summarized a few trends for future work. With the rapid expansion in datasets and the advent of more advanced neural networks, learnable methods with fine feature representation abilities are very promising. This comprehensive review can serve as a fruitful reference source for peer researchers, thus paving the way for the development of computational hyperspectral imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
细心青烟发布了新的文献求助10
1秒前
2秒前
妮妮完成签到,获得积分10
4秒前
jenniefer完成签到,获得积分10
6秒前
yoona发布了新的文献求助30
7秒前
哭泣雅绿发布了新的文献求助10
8秒前
啊露完成签到,获得积分10
9秒前
毛豆应助wys2493采纳,获得10
9秒前
111关闭了111文献求助
12秒前
天天快乐应助细心青烟采纳,获得10
12秒前
科研通AI2S应助妮妮采纳,获得10
13秒前
wk完成签到,获得积分20
13秒前
14秒前
beizi完成签到,获得积分10
15秒前
云一驳回了田様应助
15秒前
yaya完成签到 ,获得积分10
16秒前
see发布了新的文献求助10
17秒前
17秒前
丰知然应助啦啦累采纳,获得10
18秒前
乐乐乐乐发布了新的文献求助20
18秒前
哭泣雅绿完成签到,获得积分20
18秒前
Doctor Tang完成签到,获得积分10
18秒前
19秒前
小二郎应助哭泣雅绿采纳,获得10
21秒前
oydent完成签到,获得积分10
22秒前
22秒前
小二郎应助zzk采纳,获得10
24秒前
24秒前
see完成签到,获得积分10
26秒前
d董完成签到,获得积分10
28秒前
29秒前
fzhou完成签到 ,获得积分10
30秒前
32秒前
小马甲应助影默采纳,获得10
32秒前
33秒前
煜琪发布了新的文献求助10
33秒前
无聊的听寒完成签到 ,获得积分10
34秒前
陌陌完成签到,获得积分10
34秒前
徐昊完成签到,获得积分10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312233
求助须知:如何正确求助?哪些是违规求助? 2944813
关于积分的说明 8521583
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432912
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650131