已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Robust and Quantified Analysis of Mass Transport and Its Application in Designing Next Generation Architecture for Polymer Electrolyte Water Electrolysis Cells

电解 电解质 材料科学 大规模运输 电流(流体) 极化(电化学) 输运现象 电流密度 纳米技术 机械 电极 化学 电气工程 工程物理 工程类 物理 量子力学 物理化学
作者
Atanu Singha Roy,Frida Roenning,Douglas Aaron,Matthew M. Mench
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (39): 1761-1761
标识
DOI:10.1149/ma2022-01391761mtgabs
摘要

Investigations to better understand the nature of mass transport and two-phase flow within a polymer electrolyte water electrolyzer (PEWE) have gained popularity as researchers strive to improve system performance and efficiency. Along with traditional polarization experiments, the use of in-situ spatial and temporal current distribution measurement techniques has proven to be very attractive. Different methods for spatial current distribution measurements include the use of resistor networks, potential probes, and printed circuit boards (PCB) [1–3]. Using such techniques, Mench and co-workers have previously demonstrated [4–7] that, under mass transport limited conditions for any combination of flow-field and diffusion media, the current density distributions consistently exhibit a gradient – with high current towards the inlet and low towards the outlet. These contour plots showed certain dissimilarities; however, they serve as a qualitative picture to gauge cell performance and characterize mass transport. Therefore, in this work a robust analysis was developed that provides a quantitative understanding and better characterization of the mass transport limitation within the electrolyzer. A mass transport number (MTN) was defined and used to further characterize the influence of mass transport limitation experienced within an electrolyzer. Applying this new analysis to our the investigations revealed that the PEWE system performance using high-performance micro-patterned Ti-foil liquid-gas-diffusion-layer (LGDL) [8,9] was highly sensitive to the cell architecture and exhibited poor mass transport behavior using traditional channel based flow-fields. Compared with the conventional porous transport layer (PTL) morphology, the lack of in-plane permeability of the LGDLs caused faster onset of mass transport limitations at lower flowrates, local increase in HFR, and poor area utilization. Therefore, a unitized single flow-field-LDGL component that mitigates these problems has been designed. Through this work it will be shown that the flow-field is designed to have pins that allow for greater in-plane transport. The staggered pattern reduces pressure drop and promotes exchange in-between channels that assist in efficient bubble removal. Additionally, the cross-section of the pin, the pitch, and aspect-ratios are adjustable to maximize porosity for different LGDLs. Finally, making this into a single unitized component having a permanently attached LGDL will decrease interfacial contact resistances and improve cell performance (as shown in Figure 1). [1] T. V. Reshetenko, G. Bender, K. Bethune, R. Rocheleau, A segmented cell approach for studying the effects of serpentine flow field parameters on PEMFC current distribution, Electrochim. Acta. 88 (2013) 571–579. https://doi.org/10.1016/j.electacta.2012.10.103. [2] A. Phillips, M. Ulsh, J. Porter, G. Bender, Utilizing a Segmented Fuel Cell to Study the Effects of Electrode Coating Irregularities on PEM Fuel Cell Initial Performance, Fuel Cells. 17 (2017) 288–298. https://doi.org/10.1002/fuce.201600214. [3] C. Immerz, B. Bensmann, P. Trinke, M. Suermann, R. Hanke-Rauschenbach, Local Current Density and Electrochemical Impedance Measurements within 50 cm Single-Channel PEM Electrolysis Cell, J. Electrochem. Soc. 165 (2018) F1292–F1299. https://doi.org/10.1149/2.0411816jes. [4] F.H. Roenning, A. Roy, D. Aaron, M.M. Mench, Spatially-Resolved Current Distribution Measurements in Polymer Electrolyte Water Electrolyzers, ECS Meet. Abstr. MA2020-02 (2020) 2457–2457. https://doi.org/10.1149/MA2020-02382457mtgabs. [5] A. Roy, F. Roenning, D. Aaron, M.M. Mench, Quantifying Lateral Current Spread While Measuring Performance Using a Segmented Polymer Electrolyte Water Electrolysis Cell, ECS Meet. Abstr. MA2020-02 (2020) 2458–2458. https://doi.org/10.1149/MA2020-02382458mtgabs. [6] A. Roy, F. Roenning, D. Aaron, M.M. Mench, Local Two-Phase Flow and Performance in Polymer Electrolyte Water Electrolysis Cells, ECS Meet. Abstr. MA2021-01 (2021) 1190–1190. https://doi.org/10.1149/MA2021-01381190mtgabs. [7] A.Z. Weber, R.L. Borup, R.M. Darling, P.K. Das, T.J. Dursch, W. Gu, D. Harvey, A. Kusoglu, S. Litster, M.M. Mench, R. Mukundan, J.P. Owejan, J.G. Pharoah, M. Secanell, I. V. Zenyuk, A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells, J. Electrochem. Soc. 161 (2014) F1254–F1299. https://doi.org/10.1149/2.0751412jes. [8] J. Mo, Z. Kang, S.T. Retterer, D.A. Cullen, T.J. Toops, J.B. Green, M.M. Mench, F.-Y. Zhang, Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting, Sci. Adv. 2 (2016) e1600690. https://doi.org/10.1126/sciadv.1600690. [9] Y. Li, Z. Kang, X. Deng, G. Yang, S. Yu, J. Mo, D.A. Talley, G.K. Jennings, F.-Y. Zhang, Wettability effects of thin titanium liquid/gas diffusion layers in proton exchange membrane electrolyzer cells, Electrochim. Acta. 298 (2019) 704–708. https://doi.org/10.1016/j.electacta.2018.12.162. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZadeAO完成签到,获得积分10
刚刚
刚刚
移动马桶完成签到 ,获得积分10
1秒前
Diligency完成签到 ,获得积分10
1秒前
恋雅颖月完成签到 ,获得积分10
1秒前
如约而至完成签到 ,获得积分10
1秒前
清爽的雨竹完成签到,获得积分10
2秒前
zf发布了新的文献求助10
2秒前
兔子完成签到 ,获得积分10
2秒前
日暮炊烟完成签到 ,获得积分0
2秒前
壮观烧鹅完成签到 ,获得积分10
4秒前
不学习的牛蛙完成签到 ,获得积分10
4秒前
研友_LmgOaZ完成签到 ,获得积分0
4秒前
5秒前
科研通AI2S应助田柾国采纳,获得10
5秒前
kkx完成签到,获得积分10
6秒前
英俊的文龙完成签到 ,获得积分20
6秒前
秋蚓完成签到 ,获得积分10
6秒前
Gentleman完成签到,获得积分10
6秒前
Chen完成签到 ,获得积分10
6秒前
彩色莞完成签到 ,获得积分10
7秒前
崔崔完成签到 ,获得积分10
8秒前
糖醋里脊加醋完成签到 ,获得积分10
9秒前
zai发布了新的文献求助10
10秒前
苏格拉没有底完成签到 ,获得积分10
10秒前
左右逢我完成签到 ,获得积分10
10秒前
Jandy完成签到 ,获得积分10
11秒前
嘎嘎慢点走完成签到 ,获得积分10
12秒前
DD完成签到 ,获得积分10
12秒前
创世纪完成签到,获得积分20
12秒前
想不出来完成签到 ,获得积分10
12秒前
一朵棉花糖完成签到 ,获得积分10
13秒前
酷酷涫完成签到 ,获得积分0
13秒前
NexusExplorer应助dsfafd采纳,获得10
13秒前
赧赧完成签到 ,获得积分10
13秒前
小黄人完成签到 ,获得积分10
14秒前
14秒前
嘿哈完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234449
求助须知:如何正确求助?哪些是违规求助? 2880760
关于积分的说明 8216976
捐赠科研通 2548347
什么是DOI,文献DOI怎么找? 1377713
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623304