Multi/many-objective evolutionary algorithm assisted by radial basis function models for expensive optimization

水准点(测量) 径向基函数 计算机科学 数学优化 基础(线性代数) 趋同(经济学) 进化算法 集合(抽象数据类型) 算法 功能(生物学) 多目标优化 选择(遗传算法) 进化策略 数学 人工智能 人工神经网络 进化生物学 生物 经济增长 经济 大地测量学 程序设计语言 地理 几何学
作者
Jinglu Li,Peng Wang,Huachao Dong,Jiangtao Shen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:122: 108798-108798 被引量:13
标识
DOI:10.1016/j.asoc.2022.108798
摘要

In this paper, a multi/many-objective optimization algorithm assisted by radial basis function is proposed based on reference vectors to solve computationally expensive optimization. According to the iteration, a set of candidates are first determined by the reference vectors guided evolutionary algorithm in a sub-cycle. Based on the candidate pool, a refinement regeneration strategy and a dynamic exploration strategy are required. The refinement regeneration strategy is adopted to update the reference vectors derived from three types of reference vectors (i.e., the coarse reference vectors, the random reference vectors, and the refined reference vectors). The dynamic exploration strategy aims to determine the infilling samples from the candidate pool, considering space-infilling characteristics in the design space and convergence in the objective space. By repeatedly selecting candidates, the refinement regeneration strategy, as well as the dynamic exploration strategy, the final Pareto-optimal solutions can be yielded when the termination condition is satisfied. To verify the effectiveness of the proposed algorithm in addressing low/high-dimensional multi/many-objective optimization, the algorithm is compared with three state-of-the-art surrogate-assisted evolutionary algorithms in terms of numerous benchmark problems and an engineering problem. According to the corresponding results, the competitiveness of the proposed algorithm is verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZMH完成签到,获得积分20
刚刚
zanedou完成签到,获得积分10
1秒前
zhc发布了新的文献求助10
1秒前
1秒前
代代发布了新的文献求助10
1秒前
1秒前
1秒前
天天快乐应助牛不可采纳,获得10
1秒前
机智的冯完成签到,获得积分10
1秒前
星辰大海应助结实的问寒采纳,获得10
2秒前
2秒前
3秒前
shen发布了新的文献求助20
3秒前
3秒前
wannn完成签到 ,获得积分10
3秒前
3秒前
3秒前
下雨天爱吃鱼完成签到,获得积分10
4秒前
4秒前
yuanquaner发布了新的文献求助10
4秒前
5秒前
Owen应助嘉汐采纳,获得10
5秒前
SYLH应助yy采纳,获得10
5秒前
皮凡发布了新的文献求助10
5秒前
久别完成签到,获得积分10
5秒前
ZMH发布了新的文献求助10
7秒前
7秒前
聪慧芷巧发布了新的文献求助10
8秒前
8秒前
搜集达人应助行云岛采纳,获得10
8秒前
000完成签到,获得积分10
9秒前
过时的谷丝完成签到,获得积分10
9秒前
9秒前
咿咿呀呀完成签到,获得积分10
10秒前
10秒前
10秒前
peng发布了新的文献求助10
11秒前
明亮的犀牛完成签到,获得积分10
11秒前
善学以致用应助好牛采纳,获得10
11秒前
葡萄冰给sanages的求助进行了留言
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993