Carbon Shell on Active Nanocatalyst for Stable Electrocatalysis

电催化剂 碳纤维 纳米材料基催化剂 催化作用 材料科学 纳米技术 纳米颗粒 化学工程 电化学 化学 电极 复合材料 复合数 有机化学 物理化学 工程类
作者
Ji Mun Yoo,Heejong Shin,Dong Young Chung,Yung‐Eun Sung
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (9): 1278-1289 被引量:144
标识
DOI:10.1021/acs.accounts.1c00727
摘要

ConspectusElectrocatalysis is a key process for renewable energy conversion and fuel production in future energy systems. Various nanostructures have been investigated to optimize the electrocatalytic activity and realize efficient energy use. However, the long-term stability of electrocatalysts is also crucial for the sustainable and reliable operation of energy devices. Nanocatalysts are degraded by various processes during electrocatalysis, which causes critical performance loss. Recent operando analyses have revealed the mechanisms of electrocatalyst failure, and specific structures have been identified as robust against degradation. Nevertheless, achieving both high activity and robust stability with the same nanostructure is challenging because the structure–property relationships that affect activity and stability are different. The optimization of electrocatalysis is often limited by a large trade-off between activity and stability in catalyst structures. Therefore, it is essential to introduce functional structural units into catalyst design to achieve electrochemical stability while preserving high activity.In this Account, we highlight the strategic use of carbon shells on catalyst surfaces to improve the stability during electrocatalysis. For this purpose, we cover three issues in the use of carbon-shell-encapsulated nanoparticles (CSENPs) as robust and active electrocatalysts: the origin of the improved stability, the identification of active sites, and synthetic routes. Carbon shells can shield catalyst surfaces from both (electro)chemical oxidation and physical agglomeration. By limiting the exposure of the catalyst surface to an oxidizing (electro)chemical environment, carbon shells can preserve the initial active site structure during electrocatalysis. In addition, by providing a physical barrier between nanoparticles, carbon shells can maintain the high surface area of CSENPs by reducing particle agglomeration during electrocatalysis. This barrier effect is also useful for constructing more active or durable structures by annealing without surface area loss. Compared to the clear stabilizing effect, however, the effect of the shell on active sites on the CSENP surface can be puzzling. Even when they are covered by a carbon shell that can block molecular adsorption on active sites, CSENP catalysts remain active and even exhibit unique catalytic behavior. Thus, we briefly cover recent efforts to identify major active sites on CSENPs using molecular probes. Furthermore, considering the membranelike role of the carbon shell, we suggest several remaining issues that should be resolved to obtain a fundamental understanding of CSENP design. Finally, we describe two synthetic approaches for the successful carbon shell encapsulation of nanoparticles: two-step and one-step syntheses. Both the postmortem coating of nanocatalysts (two-step) and the in situ formation via precursor ligands (one step) are shown to produce a durable carbon layer on nanocatalysts in a controlled manner. The strengths and limitations of each approach are also presented to promote the further investigation of advanced synthesis methods.The hybrid structure of CSENPs, that is, the active catalyst surface and the durable carbon shell, provides an interesting opportunity in electrocatalysis. However, our understanding of CSENPs is still highly limited, and further investigation is needed to answer fundamental questions regarding both active site identification and the mechanisms of stability improvement. Only when we start to comprehend the fundamental mechanisms underlying electrocatalysis on CSENPs will electrocatalysts be further improved for sustainable long-term device operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦慕晴完成签到 ,获得积分10
3秒前
lilylwy完成签到 ,获得积分0
4秒前
弧光完成签到 ,获得积分10
7秒前
Lucas应助武雨寒采纳,获得10
18秒前
荔枝完成签到 ,获得积分10
22秒前
77完成签到 ,获得积分10
26秒前
LJ_2完成签到 ,获得积分10
34秒前
武雨寒发布了新的文献求助10
37秒前
在水一方应助风之谷采纳,获得10
37秒前
zw完成签到,获得积分0
38秒前
假装学霸完成签到 ,获得积分10
39秒前
Raul完成签到 ,获得积分10
47秒前
周全完成签到 ,获得积分10
50秒前
ghost完成签到 ,获得积分10
50秒前
落后冬云完成签到 ,获得积分10
53秒前
fanlin完成签到,获得积分0
56秒前
灰灰喵完成签到 ,获得积分10
1分钟前
洁净的盼易完成签到 ,获得积分10
1分钟前
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
风之谷发布了新的文献求助10
1分钟前
魔幻的慕梅完成签到 ,获得积分10
1分钟前
风秋杨完成签到 ,获得积分10
1分钟前
1分钟前
qitu发布了新的文献求助10
1分钟前
风之谷完成签到,获得积分10
1分钟前
北笙完成签到 ,获得积分10
1分钟前
无花果应助qitu采纳,获得10
1分钟前
JamesPei应助zhenxinxon采纳,获得10
2分钟前
3194953964完成签到 ,获得积分10
2分钟前
彩色的冷梅完成签到 ,获得积分10
2分钟前
吾系渣渣辉完成签到 ,获得积分10
2分钟前
迈克老狼完成签到 ,获得积分10
2分钟前
回首不再是少年完成签到,获得积分0
2分钟前
Fiona完成签到 ,获得积分10
3分钟前
3分钟前
研友_Z7XY28完成签到 ,获得积分10
3分钟前
莫即完成签到 ,获得积分10
3分钟前
3分钟前
长期素食完成签到 ,获得积分10
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291547
求助须知:如何正确求助?哪些是违规求助? 2928042
关于积分的说明 8435109
捐赠科研通 2599861
什么是DOI,文献DOI怎么找? 1418806
科研通“疑难数据库(出版商)”最低求助积分说明 660150
邀请新用户注册赠送积分活动 642771