Hyperspectral imaging coupled with CNN: A powerful approach for quantitative identification of feather meal and fish by-product meal adulterated in marine fishmeal

掺假者 支持向量机 卷积神经网络 高光谱成像 人工智能 模式识别(心理学) 偏最小二乘回归 鱼粉 数学 笛卡尔叶 计算机科学 食品科学 机器学习 化学 渔业 色谱法 生物 高效液相色谱法
作者
Dandan Kong,Yongqiang Shi,Dawei Sun,Lei Zhou,Wenkai Zhang,Ruicheng Qiu,Yong He
出处
期刊:Microchemical Journal [Elsevier]
卷期号:180: 107517-107517 被引量:24
标识
DOI:10.1016/j.microc.2022.107517
摘要

Marine fishmeal (MFM) adulterated with low-cost processed animal proteins (PAPs) such as hydrolyzed feather meal (HFM) and fish by-product meal (FBM) has frequently occurred in the Chinese trade market. This commercial fraud generates a serious threat to farmed animal health and even human food safety. This study aims to develop a rapid detection method using near-infrared hyperspectral imaging (NIR-HSI) combined with deep learning modeling for qualitative and quantitative identification of MFM adulterated with HFM, FBM, and the binary adulterant (HFM-FBM). Three convolutional neural network (CNN) architectures with optimized parameters were constructed to predict sample classes, adulterant concentration, and amino acid content of adulterated samples, respectively. Partial least squares (PLS) and support vector machine (SVM) models were compared with the proposed CNN models. The overall results showed that the CNN outperformed the PLS and SVM on both classification and regression. The six-classification accuracy obtained by the CNN was up to 99.37%, while the R2 of CNN regression prediction varied from 0.984 to 0.997. This study demonstrates that NIR-HSI coupled with CNN calibration provides a promising technique for the detection of MFM adulterated with PAPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助深林盛世采纳,获得10
2秒前
zouxing发布了新的文献求助10
3秒前
kylin完成签到,获得积分10
6秒前
尼莫完成签到,获得积分10
7秒前
科研通AI2S应助追寻的筝采纳,获得10
7秒前
xiaode发布了新的文献求助10
7秒前
ALLon完成签到 ,获得积分10
8秒前
11秒前
15秒前
15秒前
寒江月完成签到 ,获得积分10
17秒前
深林盛世发布了新的文献求助10
18秒前
yy完成签到,获得积分10
18秒前
热情嘉懿发布了新的文献求助10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
21秒前
21秒前
科研小白应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得30
21秒前
21秒前
充电宝应助包容的人生采纳,获得10
22秒前
yy发布了新的文献求助20
22秒前
丘比特应助Mayday采纳,获得10
23秒前
打打应助皮皮采纳,获得10
23秒前
搜集达人应助福福采纳,获得10
26秒前
Ying_CHU发布了新的文献求助10
26秒前
科目三应助李多多采纳,获得10
27秒前
32秒前
32秒前
33秒前
34秒前
JamesPei应助lili采纳,获得10
34秒前
wu发布了新的文献求助10
37秒前
围城完成签到,获得积分10
37秒前
Son4904发布了新的文献求助10
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352731
求助须知:如何正确求助?哪些是违规求助? 2977735
关于积分的说明 8681231
捐赠科研通 2658733
什么是DOI,文献DOI怎么找? 1455921
科研通“疑难数据库(出版商)”最低求助积分说明 674158
邀请新用户注册赠送积分活动 664801