Artificial intelligence to evaluate postoperative pain based on facial expression recognition

面部表情 疼痛评估 强度(物理) 一致性 医学 物理疗法 卷积神经网络 表达式(计算机科学) 评定量表 深度学习 物理医学与康复 人工智能 疼痛管理 计算机科学 心理学 内科学 发展心理学 物理 量子力学 程序设计语言
作者
Denys Fontaine,Valentin Vielzeuf,Philippe Genestier,Pascal Limeux,Serena Santucci‐Sivilotto,Emmanuel Mory,Nicole Darmon,Michel Lantéri‐Minet,Mime Mokhtar,Mikaela Laine,Damien Vistoli
出处
期刊:European Journal of Pain [Wiley]
卷期号:26 (6): 1282-1291 被引量:25
标识
DOI:10.1002/ejp.1948
摘要

Abstract Background Pain intensity evaluation by self‐report is difficult and biased in non‐communicating people, which may contribute to inappropriate pain management. The use of artificial intelligence (AI) to evaluate pain intensity based on automated facial expression analysis has not been evaluated in clinical conditions. Methods We trained and externally validated a deep‐learning system (ResNet‐18 convolutional neural network) to identify and classify 2810 facial expressions of 1189 patients, captured before and after surgery, according to their self‐reported pain intensity using numeric rating scale (NRS, 0–10). AI performances were evaluated by accuracy (concordance between AI prediction and patient‐reported pain intensity), sensitivity and specificity to diagnose pain ≥4/10 and ≥7/10. We then confronted AI performances with those of 33 nurses to evaluate pain intensity from facial expression in the same situation. Results In the external testing set (120 face images), the deep learning system was able to predict exactly the pain intensity among the 11 possible scores (0–10) in 53% of the cases with a mean error of 2.4 points. Its sensitivities to detect pain ≥4/10 and ≥7/10 were 89.7% and 77.5%, respectively. Nurses estimated the right NRS pain intensity with a mean accuracy of 14.9% and identified pain ≥4/10 and ≥7/10 with sensitivities of 44.9% and 17.0%. Conclusions Subject to further improvement of AI performances through further training, these results suggest that AI using facial expression analysis could be used to assist physicians to evaluate pain and detect severe pain, especially in people not able to report appropriately their pain by themselves. Significance These original findings represent a major step in the development of a fully automated, rapid, standardized and objective method based on facial expression analysis to measure pain and detect severe pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
厚礼蟹完成签到 ,获得积分10
1秒前
littleE发布了新的文献求助20
2秒前
poohpooh完成签到,获得积分10
2秒前
3秒前
A,w携念e行ོ完成签到,获得积分10
3秒前
aq完成签到,获得积分10
7秒前
BEN完成签到,获得积分10
7秒前
星辰大海应助Lazarus_x采纳,获得10
7秒前
9秒前
许大脚发布了新的文献求助10
9秒前
wuludie发布了新的文献求助10
10秒前
wuludie发布了新的文献求助10
11秒前
CMJ发布了新的文献求助20
11秒前
小研究牲完成签到,获得积分20
11秒前
木木彡发布了新的文献求助20
12秒前
柑橘应助聪明飞雪采纳,获得10
12秒前
琳chen发布了新的文献求助10
14秒前
15秒前
有且仅有发布了新的文献求助30
15秒前
numie完成签到,获得积分10
15秒前
KK完成签到,获得积分10
16秒前
16秒前
zzz完成签到,获得积分10
17秒前
19秒前
19秒前
20秒前
勤劳茗发布了新的文献求助10
21秒前
23秒前
24秒前
duansiyu完成签到,获得积分10
24秒前
24秒前
yenist完成签到,获得积分10
26秒前
bkagyin应助苗儿采纳,获得10
26秒前
27秒前
黄焖鸡完成签到 ,获得积分10
28秒前
29秒前
小赞的坚果完成签到,获得积分10
30秒前
可靠半青完成签到 ,获得积分10
31秒前
顾矜应助明亮随阴采纳,获得10
31秒前
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143731
求助须知:如何正确求助?哪些是违规求助? 2795219
关于积分的说明 7813671
捐赠科研通 2451210
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601400