Biomarkers and predictive models of early allograft dysfunction in liver transplantation – A systematic review of the literature, meta‐analysis, and expert panel recommendations

医学 诊断优势比 肝移植 荟萃分析 接收机工作特性 内科学 系统回顾 梅德林 曲线下面积 样本量测定 优势比 生物标志物 移植 生物化学 化学 政治学 法学 统计 数学
作者
Jiang Liu,Paulo N. Martins,Mamatha Bhat,Li Pang,Oscar W.H. Yeung,TP Ng,Michael Spiro,Dimitri Aristotle Raptis,Kwan Man,Valeria R. Mas
出处
期刊:Clinical transplantation [Wiley]
卷期号:36 (10) 被引量:8
标识
DOI:10.1111/ctr.14635
摘要

Prompt identification of early allograft dysfunction (EAD) is critical to reduce morbidity and mortality in liver transplant (LT) recipients.Evaluate the evidence supporting biomarkers that can provide diagnostic and predictive value for EAD.Ovid MEDLINE, Embase, Scopus, Google Scholar, and Cochrane Central.Systematic review following PRISMA guidelines and recommendations using the GRADE approach was derived from an international expert panel. Studies that investigated biomarkers or models for predicting EAD in adult LT recipients were included for in-depth evaluation and meta-analysis. Olthoff's criteria were used as the standard reference for the diagnostic accuracy evaluation.CRD42021293838 RESULTS: Ten studies were included for the systematic review. Lactate, lactate clearance, uric acid, Factor V, HMGB-1, CRP to ALB ratio, phosphocholine, total cholesterol, and metabolomic predictive model were identified as potential early EAD predictive biomarkers. The sensitivity ranged between .39 and .92, while the specificity ranged from .63 to .90. Elevated lactate level was most indicative of EAD after adult LT (pooled diagnostic odds ratio of 7.15 (95%CI: 2.38-21.46)). The quality of evidence (QOE) for lactate as indicator was moderate according to the GRADE approach, whereas the QOE for other biomarkers was very low to low likely as consequence of study design characteristics such as single study, small sample size, and large ranges of sensitivity or specificity.Lactate is an early indicator to predict EAD after LT (Quality of Evidence: Moderate | Grade of Recommendation: Strong). Further multicenter studies and the use of machine perfusion setting should be implemented for validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助虚心的清采纳,获得10
刚刚
1秒前
chenry完成签到,获得积分10
1秒前
一事无成的研一完成签到,获得积分10
2秒前
子车茗应助机智小兔子采纳,获得10
3秒前
syxz0628完成签到,获得积分10
4秒前
aaaaa发布了新的文献求助20
4秒前
Sherry发布了新的文献求助10
4秒前
杨锐发布了新的文献求助10
4秒前
kai完成签到,获得积分10
4秒前
4秒前
6秒前
Janice227完成签到,获得积分10
6秒前
郭郭要努力ya完成签到 ,获得积分0
6秒前
科研通AI5应助kobe采纳,获得10
7秒前
to高坚果发布了新的文献求助10
8秒前
西门明雪完成签到,获得积分10
8秒前
自由的松发布了新的文献求助10
9秒前
11秒前
11秒前
olia发布了新的文献求助10
11秒前
Candice应助孤独树叶采纳,获得10
12秒前
YUJIALING完成签到 ,获得积分10
12秒前
酷波er应助tdtk采纳,获得10
12秒前
冰冰完成签到 ,获得积分20
13秒前
13秒前
13秒前
胡桃夹子发布了新的文献求助30
13秒前
14秒前
syxz0628发布了新的文献求助10
14秒前
都可以完成签到,获得积分10
14秒前
科研通AI5应助qfchen0716网易采纳,获得10
15秒前
JamesPei应助qfchen0716网易采纳,获得10
15秒前
丘比特应助qfchen0716网易采纳,获得10
15秒前
子川发布了新的文献求助10
15秒前
田様应助qfchen0716网易采纳,获得10
15秒前
科目三应助qfchen0716网易采纳,获得10
16秒前
黄紫红蓝应助qfchen0716网易采纳,获得10
16秒前
rr发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676