ABSTRACT Yellowfin tuna (Thunnus albacares) swimming kinematics was studied in a large water tunnel at controlled swimming velocities (U). Quantified kinematic variables included the tail-beat frequency, stride length (l), caudal amplitude, yaw, the propulsive wavelength, the speed of the propulsive wave (C) and the sweepback angle of the pectoral fins. In general, all variables, except the propulsive wavelength and consequently C, are comparable to values determined for other teleosts. The propulsive wavelength for the tunas (1.23–1.29 L, where L is fork length) is 30–60% longer than in other cruise-adapted teleosts such as salmonids. The resulting thunniform swimming mode and the morphological and anatomical adaptations associated with the long propulsive wavelength (e.g. fusiform body shape, rigid vertebral column) act to minimize anterior resistance and maximize caudal thrust. The long propulsive wavelength also increases the maximum l which, in concert with the elevated muscle temperatures of tunas, increases their maximum swimming velocity.