Weakly-supervised learning to automatically count cotton flowers from aerial imagery

人工智能 卷积神经网络 计算机科学 渲染(计算机图形) 二元分类 机器学习 任务(项目管理) 过程(计算) 模式识别(心理学) 支持向量机 管理 经济 操作系统
作者
Daniel Petti,Changying Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106734-106734 被引量:11
标识
DOI:10.1016/j.compag.2022.106734
摘要

Counting plant flowers is a common task with applications for estimating crop yields and selecting favorable genotypes. Typically, this requires a laborious manual process, rendering it impractical to obtain accurate flower counts throughout the growing season. The model proposed in this study uses weak supervision, based on Convolutional Neural Networks (CNNs), which automates such a counting task for cotton flowers using imagery collected from an unmanned aerial vehicle (UAV). Furthermore, the model is trained using Multiple Instance Learning (MIL) in order to reduce the required amount of annotated data. MIL is a binary classification task in which any image with at least one flower falls into the positive class, and all others are negative. In the process, a novel loss function was developed that is designed to improve the performance of image-processing models that use MIL. The model is trained on a large dataset of cotton plant imagery which was collected over several years and will be made publicly available. Additionally, an active-learning-based approach is employed in order to generate the annotations for the dataset while minimizing the required amount of human intervention. Despite having minimal supervision, the model still demonstrates good performance on the testing dataset. Multiple models were tested with different numbers of parameters and input sizes, achieving a minimum average absolute count error of 2.43. Overall, this study demonstrates that a weakly-supervised model is a promising method for solving the flower counting problem while minimizing the human labeling effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孤独收割人完成签到,获得积分10
1秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
3秒前
Upupcc发布了新的文献求助10
5秒前
5秒前
勤劳落雁发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
周周发布了新的文献求助10
7秒前
8秒前
科研通AI5应助解青文采纳,获得10
8秒前
科研通AI5应助魏伯安采纳,获得30
8秒前
nekoneko完成签到,获得积分10
11秒前
11秒前
12秒前
帅关发布了新的文献求助10
12秒前
yyyyy语言发布了新的文献求助10
13秒前
asheng98完成签到 ,获得积分10
14秒前
Chen完成签到,获得积分10
14秒前
慕青应助guajiguaji采纳,获得10
15秒前
圣晟胜发布了新的文献求助10
16秒前
16秒前
16秒前
不会失忆完成签到,获得积分10
18秒前
思源应助路边一颗小草采纳,获得10
18秒前
上官若男应助帅关采纳,获得10
19秒前
qin完成签到,获得积分10
20秒前
20秒前
流浪小诗人完成签到,获得积分10
20秒前
22秒前
知性的觅露完成签到,获得积分10
22秒前
朱湋帆完成签到 ,获得积分10
22秒前
devil发布了新的文献求助10
23秒前
乐乐应助咸鱼一号采纳,获得10
24秒前
26秒前
youjiang完成签到,获得积分10
26秒前
devil完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849