Weakly-supervised learning to automatically count cotton flowers from aerial imagery

人工智能 卷积神经网络 计算机科学 渲染(计算机图形) 二元分类 机器学习 任务(项目管理) 过程(计算) 模式识别(心理学) 支持向量机 管理 经济 操作系统
作者
Daniel Petti,Changying Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106734-106734 被引量:11
标识
DOI:10.1016/j.compag.2022.106734
摘要

Counting plant flowers is a common task with applications for estimating crop yields and selecting favorable genotypes. Typically, this requires a laborious manual process, rendering it impractical to obtain accurate flower counts throughout the growing season. The model proposed in this study uses weak supervision, based on Convolutional Neural Networks (CNNs), which automates such a counting task for cotton flowers using imagery collected from an unmanned aerial vehicle (UAV). Furthermore, the model is trained using Multiple Instance Learning (MIL) in order to reduce the required amount of annotated data. MIL is a binary classification task in which any image with at least one flower falls into the positive class, and all others are negative. In the process, a novel loss function was developed that is designed to improve the performance of image-processing models that use MIL. The model is trained on a large dataset of cotton plant imagery which was collected over several years and will be made publicly available. Additionally, an active-learning-based approach is employed in order to generate the annotations for the dataset while minimizing the required amount of human intervention. Despite having minimal supervision, the model still demonstrates good performance on the testing dataset. Multiple models were tested with different numbers of parameters and input sizes, achieving a minimum average absolute count error of 2.43. Overall, this study demonstrates that a weakly-supervised model is a promising method for solving the flower counting problem while minimizing the human labeling effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助调皮的蝴蝶采纳,获得10
1秒前
咩咩发布了新的文献求助30
2秒前
汉堡包应助刘霞采纳,获得10
2秒前
3秒前
3秒前
3秒前
小二郎应助ardejiang采纳,获得10
3秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
慈祥的寻芹完成签到 ,获得积分10
5秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
ShowMaker应助科研通管家采纳,获得30
6秒前
华仔应助科研通管家采纳,获得10
6秒前
萧水白应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
bob发布了新的文献求助10
7秒前
10秒前
qq完成签到,获得积分10
10秒前
bqf发布了新的文献求助10
11秒前
12秒前
xia xianxin完成签到,获得积分10
13秒前
15秒前
16秒前
16秒前
Dre4m_Z发布了新的文献求助10
17秒前
18秒前
王某完成签到 ,获得积分10
18秒前
20秒前
20秒前
20秒前
从容芮应助不爱吃麻酱采纳,获得10
20秒前
小马甲应助ardejiang采纳,获得10
21秒前
21秒前
21秒前
嗯哼应助小阿博采纳,获得20
21秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154407
求助须知:如何正确求助?哪些是违规求助? 2805321
关于积分的说明 7864166
捐赠科研通 2463472
什么是DOI,文献DOI怎么找? 1311341
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821