Weakly-supervised learning to automatically count cotton flowers from aerial imagery

人工智能 卷积神经网络 计算机科学 渲染(计算机图形) 二元分类 机器学习 任务(项目管理) 过程(计算) 模式识别(心理学) 支持向量机 管理 经济 操作系统
作者
Daniel Petti,Changying Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106734-106734 被引量:11
标识
DOI:10.1016/j.compag.2022.106734
摘要

Counting plant flowers is a common task with applications for estimating crop yields and selecting favorable genotypes. Typically, this requires a laborious manual process, rendering it impractical to obtain accurate flower counts throughout the growing season. The model proposed in this study uses weak supervision, based on Convolutional Neural Networks (CNNs), which automates such a counting task for cotton flowers using imagery collected from an unmanned aerial vehicle (UAV). Furthermore, the model is trained using Multiple Instance Learning (MIL) in order to reduce the required amount of annotated data. MIL is a binary classification task in which any image with at least one flower falls into the positive class, and all others are negative. In the process, a novel loss function was developed that is designed to improve the performance of image-processing models that use MIL. The model is trained on a large dataset of cotton plant imagery which was collected over several years and will be made publicly available. Additionally, an active-learning-based approach is employed in order to generate the annotations for the dataset while minimizing the required amount of human intervention. Despite having minimal supervision, the model still demonstrates good performance on the testing dataset. Multiple models were tested with different numbers of parameters and input sizes, achieving a minimum average absolute count error of 2.43. Overall, this study demonstrates that a weakly-supervised model is a promising method for solving the flower counting problem while minimizing the human labeling effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你晖哥完成签到,获得积分10
刚刚
2秒前
aaaaa完成签到,获得积分10
2秒前
3秒前
烟花应助快乐的风采纳,获得10
3秒前
4秒前
zbw发布了新的文献求助10
5秒前
Mercurius完成签到,获得积分10
6秒前
6秒前
孙小头完成签到 ,获得积分10
8秒前
wjw发布了新的文献求助10
11秒前
含糊的尔槐完成签到,获得积分10
11秒前
Ava应助名天采纳,获得10
11秒前
14秒前
15秒前
cxwcn完成签到 ,获得积分10
17秒前
20秒前
20秒前
轩风发布了新的文献求助10
20秒前
快乐的风发布了新的文献求助10
21秒前
画清风完成签到,获得积分10
21秒前
21秒前
bnjay发布了新的文献求助50
22秒前
酷波er应助LANER采纳,获得10
22秒前
冷傲的xu完成签到,获得积分10
24秒前
25秒前
26秒前
Ava应助zzm采纳,获得10
27秒前
28秒前
zbw完成签到 ,获得积分20
28秒前
Lyla完成签到,获得积分10
28秒前
拼搏的败完成签到 ,获得积分10
29秒前
chf102完成签到,获得积分10
30秒前
快乐的风完成签到,获得积分20
31秒前
单薄的西装应助Abdory采纳,获得10
31秒前
31秒前
32秒前
32秒前
Lyla发布了新的文献求助10
32秒前
充电宝应助常乐的大宝剑采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719