Neural Network Structure Optimization by Simulated Annealing

模拟退火 计算机科学 人工神经网络 数学优化 启发式 修剪 GSM演进的增强数据速率 反向传播 计算复杂性理论 算法 人工智能 数学 农学 生物
作者
Chun Lin Kuo,Erçan E. Kuruoğlu,Wai Kin Chan
出处
期刊:Entropy [MDPI AG]
卷期号:24 (3): 348-348 被引量:9
标识
DOI:10.3390/e24030348
摘要

A critical problem in large neural networks is over parameterization with a large number of weight parameters, which limits their use on edge devices due to prohibitive computational power and memory/storage requirements. To make neural networks more practical on edge devices and real-time industrial applications, they need to be compressed in advance. Since edge devices cannot train or access trained networks when internet resources are scarce, the preloading of smaller networks is essential. Various works in the literature have shown that the redundant branches can be pruned strategically in a fully connected network without sacrificing the performance significantly. However, majority of these methodologies need high computational resources to integrate weight training via the back-propagation algorithm during the process of network compression. In this work, we draw attention to the optimization of the network structure for preserving performance despite compression by pruning aggressively. The structure optimization is performed using the simulated annealing algorithm only, without utilizing back-propagation for branch weight training. Being a heuristic-based, non-convex optimization method, simulated annealing provides a globally near-optimal solution to this NP-hard problem for a given percentage of branch pruning. Our simulation results have shown that simulated annealing can significantly reduce the complexity of a fully connected network while maintaining the performance without the help of back-propagation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搞怪白易发布了新的文献求助10
1秒前
浦肯野应助irisjlj采纳,获得10
2秒前
迟大猫应助通~采纳,获得10
4秒前
6秒前
7秒前
木槿花难开完成签到,获得积分10
8秒前
小巧念寒完成签到,获得积分10
11秒前
玉ER完成签到,获得积分10
13秒前
希望天下0贩的0应助wei采纳,获得10
13秒前
北枳完成签到 ,获得积分10
17秒前
地精术士完成签到,获得积分10
18秒前
浙江嘉兴完成签到,获得积分10
18秒前
我是站长才怪应助通~采纳,获得10
20秒前
shiyu完成签到,获得积分10
20秒前
Herman_Chen完成签到,获得积分10
27秒前
Zn应助牛文文采纳,获得10
29秒前
29秒前
30秒前
贤惠的白开水完成签到 ,获得积分10
30秒前
英姑应助林林林采纳,获得10
31秒前
科研小民工应助Anquan采纳,获得30
31秒前
cyt9999发布了新的文献求助10
32秒前
天天快乐应助好难啊采纳,获得10
33秒前
干净的烧鹅完成签到,获得积分10
34秒前
35秒前
35秒前
在人中发布了新的文献求助10
36秒前
36秒前
fls221完成签到,获得积分10
37秒前
Laity完成签到,获得积分10
39秒前
39秒前
健忘捕发布了新的文献求助10
39秒前
林林林发布了新的文献求助10
40秒前
ok完成签到 ,获得积分10
41秒前
乐乐应助wewe采纳,获得30
41秒前
41秒前
拥有八根情丝完成签到 ,获得积分10
42秒前
科研通AI5应助Rex采纳,获得10
43秒前
44秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851