Neural Network Structure Optimization by Simulated Annealing

模拟退火 计算机科学 人工神经网络 数学优化 启发式 修剪 GSM演进的增强数据速率 反向传播 计算复杂性理论 算法 人工智能 数学 农学 生物
作者
Chun Lin Kuo,Erçan E. Kuruoğlu,Wai Kin Chan
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:24 (3): 348-348 被引量:9
标识
DOI:10.3390/e24030348
摘要

A critical problem in large neural networks is over parameterization with a large number of weight parameters, which limits their use on edge devices due to prohibitive computational power and memory/storage requirements. To make neural networks more practical on edge devices and real-time industrial applications, they need to be compressed in advance. Since edge devices cannot train or access trained networks when internet resources are scarce, the preloading of smaller networks is essential. Various works in the literature have shown that the redundant branches can be pruned strategically in a fully connected network without sacrificing the performance significantly. However, majority of these methodologies need high computational resources to integrate weight training via the back-propagation algorithm during the process of network compression. In this work, we draw attention to the optimization of the network structure for preserving performance despite compression by pruning aggressively. The structure optimization is performed using the simulated annealing algorithm only, without utilizing back-propagation for branch weight training. Being a heuristic-based, non-convex optimization method, simulated annealing provides a globally near-optimal solution to this NP-hard problem for a given percentage of branch pruning. Our simulation results have shown that simulated annealing can significantly reduce the complexity of a fully connected network while maintaining the performance without the help of back-propagation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏夏发布了新的文献求助10
1秒前
lwww423完成签到,获得积分10
2秒前
我先睡了发布了新的文献求助10
3秒前
3秒前
哈喽完成签到,获得积分10
3秒前
4秒前
宗语雪完成签到,获得积分10
4秒前
乐乐应助打工科研采纳,获得10
5秒前
elang发布了新的文献求助10
6秒前
跳跳猴爱吃小松鼠完成签到,获得积分20
7秒前
嘿嘿嘿完成签到,获得积分10
7秒前
深情安青应助称心的夏彤采纳,获得10
8秒前
9秒前
10秒前
随安发布了新的文献求助10
10秒前
钱来完成签到,获得积分10
12秒前
不甜完成签到,获得积分10
13秒前
14秒前
123发布了新的文献求助10
15秒前
刘大大发布了新的文献求助10
15秒前
17秒前
奥米希完成签到,获得积分10
20秒前
20秒前
22秒前
研友_VZGvVn发布了新的文献求助10
22秒前
陈椅子的求学完成签到,获得积分10
23秒前
随安完成签到,获得积分10
23秒前
命运线完成签到,获得积分10
23秒前
24秒前
山城小肘子完成签到,获得积分10
25秒前
汉堡包应助shanshanlaichi采纳,获得10
26秒前
可乐发布了新的文献求助10
26秒前
研友_VZGvVn完成签到,获得积分10
26秒前
旺仔Mario完成签到,获得积分10
27秒前
27秒前
栗子完成签到,获得积分10
27秒前
斯文败类应助哈哈哈采纳,获得10
28秒前
wwb完成签到,获得积分10
29秒前
打工科研发布了新的文献求助10
30秒前
结实的德地完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993