Neural Network Structure Optimization by Simulated Annealing

模拟退火 计算机科学 人工神经网络 数学优化 启发式 修剪 GSM演进的增强数据速率 反向传播 计算复杂性理论 算法 人工智能 数学 农学 生物
作者
Chun Lin Kuo,Erçan E. Kuruoğlu,Wai Kin Chan
出处
期刊:Entropy [MDPI AG]
卷期号:24 (3): 348-348 被引量:9
标识
DOI:10.3390/e24030348
摘要

A critical problem in large neural networks is over parameterization with a large number of weight parameters, which limits their use on edge devices due to prohibitive computational power and memory/storage requirements. To make neural networks more practical on edge devices and real-time industrial applications, they need to be compressed in advance. Since edge devices cannot train or access trained networks when internet resources are scarce, the preloading of smaller networks is essential. Various works in the literature have shown that the redundant branches can be pruned strategically in a fully connected network without sacrificing the performance significantly. However, majority of these methodologies need high computational resources to integrate weight training via the back-propagation algorithm during the process of network compression. In this work, we draw attention to the optimization of the network structure for preserving performance despite compression by pruning aggressively. The structure optimization is performed using the simulated annealing algorithm only, without utilizing back-propagation for branch weight training. Being a heuristic-based, non-convex optimization method, simulated annealing provides a globally near-optimal solution to this NP-hard problem for a given percentage of branch pruning. Our simulation results have shown that simulated annealing can significantly reduce the complexity of a fully connected network while maintaining the performance without the help of back-propagation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nnnnn完成签到 ,获得积分10
刚刚
kk完成签到,获得积分10
2秒前
4秒前
千里江山一只蝇完成签到,获得积分10
6秒前
6秒前
星辰大海应助Realrr采纳,获得10
7秒前
慕青应助6666采纳,获得10
8秒前
顾茗发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
yufei发布了新的文献求助10
12秒前
JamesPei应助流星雨采纳,获得10
12秒前
jobs发布了新的文献求助20
12秒前
13秒前
13秒前
张宝发布了新的文献求助10
13秒前
邱帅发布了新的文献求助10
13秒前
klicking发布了新的文献求助30
15秒前
阳光怀亦发布了新的文献求助50
15秒前
Cola完成签到,获得积分10
16秒前
16秒前
17秒前
思源应助zhen采纳,获得10
17秒前
思源应助李吉婷采纳,获得10
18秒前
19秒前
Lucas应助言言言言采纳,获得10
20秒前
20秒前
20秒前
ray发布了新的文献求助10
22秒前
胡子给胡子的求助进行了留言
22秒前
骑羊完成签到,获得积分10
22秒前
ggg发布了新的文献求助10
24秒前
邱帅完成签到,获得积分10
27秒前
Clover完成签到 ,获得积分10
27秒前
28秒前
29秒前
31秒前
顾矜应助大宝S欧D蜜采纳,获得10
31秒前
今后应助ggg采纳,获得10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161657
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897803
捐赠科研通 2471830
什么是DOI,文献DOI怎么找? 1316176
科研通“疑难数据库(出版商)”最低求助积分说明 631245
版权声明 602129