Prediction and optimization of the design decisions of liquid cooling systems of battery modules using artificial neural networks

粒子群优化 人工神经网络 压力降 性能系数 电池(电) 遗传算法 最优化问题 计算机科学 功率(物理) 数学优化 工程类 热泵 机械工程 算法 数学 人工智能 热力学 机器学习 物理 热交换器
作者
Emre Bulut,Emre İsa Albak,Gökhan Sevilgen,Ferruh Öztürk
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (6): 7293-7308 被引量:22
标识
DOI:10.1002/er.7637
摘要

Liquid cooling systems are effective for keeping the battery modules in the safe temperature range. This study focuses on decreasing the power consumption of the pump without compromising the cooling performance. Artificial neural network (ANN) models are created to predict the effects of the height and width of the cooling channel and the mass flow rate on the maximum temperature, convective heat transfer coefficient, and pressure drop. The ANN models are used as surrogate models for the design and optimization of the liquid cooling battery system. Particle swarm optimization (PSO) and genetic algorithm (GA), which are commonly utilized optimization methods in many areas, and chaos game optimization (CGO) and coot optimization algorithm (COOT) methods, which are recently presented methods, are adopted to minimize the power consumption of the pump. The results are compared in terms of computational performance and best, worst, average, and SD values. Despite all of the optimization methods used giving similar results, the CGO method comes forward due to fast converging, SD, and finding the minimum power consumption of the pump among other optimization methods. A 22.4% decrease in the power consumption of the pump is achieved with the use of the ANN-based CGO method while conserving the cooling performance. When comparing the ANN predicted and CFD results, the relative errors are less than 1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
castleman应助毅诚菌采纳,获得10
2秒前
xc124发布了新的文献求助10
4秒前
5秒前
诗懿完成签到,获得积分10
7秒前
Asteroid完成签到,获得积分10
7秒前
机智的小羊尾完成签到 ,获得积分10
7秒前
天天快乐应助欧阳万仇采纳,获得10
9秒前
siri完成签到,获得积分10
12秒前
Sean完成签到,获得积分10
13秒前
感动迎蕾完成签到 ,获得积分10
14秒前
汉堡包应助Muller采纳,获得30
14秒前
领导范儿应助科研通管家采纳,获得10
15秒前
邓佳鑫Alan应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
16秒前
tuanheqi应助科研通管家采纳,获得30
16秒前
今后应助科研通管家采纳,获得10
16秒前
16秒前
小马甲应助ll采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
17秒前
17秒前
wanci应助科研通管家采纳,获得20
17秒前
田様应助科研通管家采纳,获得10
17秒前
邓佳鑫Alan应助科研通管家采纳,获得10
17秒前
17秒前
tuanheqi应助科研通管家采纳,获得30
17秒前
英姑应助科研通管家采纳,获得10
17秒前
17秒前
善学以致用应助缓慢珠采纳,获得10
18秒前
20秒前
CipherSage应助bluecedar采纳,获得50
20秒前
zyt发布了新的文献求助10
22秒前
含章发布了新的文献求助10
22秒前
YOP完成签到 ,获得积分10
22秒前
LHL发布了新的文献求助10
23秒前
在远方发布了新的文献求助10
23秒前
研友_VZG7GZ应助嘻嘻采纳,获得10
24秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343583
求助须知:如何正确求助?哪些是违规求助? 2970629
关于积分的说明 8644643
捐赠科研通 2650717
什么是DOI,文献DOI怎么找? 1451432
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661569