Deep learning‐based AI model for signet‐ring cell carcinoma diagnosis and chemotherapy response prediction in gastric cancer

医学 印戒细胞癌 化疗 队列 癌症 接收机工作特性 内科学 肿瘤科 回顾性队列研究 比例危险模型 曲线下面积 生存分析 放射科 腺癌
作者
Cong Li,Yun Qin,Weihan Zhang,Hanyu Jiang,Bin Song,Mustafa R. Bashir,Heng Xu,Ting Duan,Mengjie Fang,Lianzhen Zhong,Lingwei Meng,Di Dong,Zhenhua Hu,Jie Tian,Jian‐Kun Hu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1535-1546 被引量:23
标识
DOI:10.1002/mp.15437
摘要

We aimed to develop a noninvasive artificial intelligence (AI) model to diagnose signet-ring cell carcinoma (SRCC) of gastric cancer (GC) and identify patients with SRCC who could benefit from postoperative chemotherapy based on preoperative contrast-enhanced computed tomography (CT).A total of 855 GC patients with 855 single GCs were included, of which 249 patients were diagnosed as SRCC by histopathologic examinations. The AI model was generated with clinical, handcrafted radiomic, and deep learning features. Model diagnostic performance was measured by area under the receiver operating characteristic curve (AUC), sensitivity, and specificity, while predictive performance was measured by Kaplan-Meier curves.In the test cohort (n = 257), the AUC, sensitivity, and specificity of our AI model for diagnosing SRCC were 0.786 (95% CI: 0.721-0.845), 77.3%, and 69.2%, respectively. For the entire cohort, patients with AI-predicted high risk had a significantly shorter median OS compared with those with low risk (median overall survival [OS], 38.8 vs. 64.2 months, p = 0.009). Importantly, in pathologically confirmed advanced SRCC patients, AI-predicted high-risk status was indicative of a shorter overall survival (median overall survival [OS], 31.0 vs. 54.4 months, p = 0.036) and marked chemotherapy resistance, whereas AI-predicted low-risk status had substantial chemotherapy benefit (median OS [without vs. with chemotherapy], 26.0 vs. not reached, p = 0.013).The CT-based AI model demonstrated good performance for diagnosing SRCC, stratifying patient prognosis, and predicting chemotherapy responses. Advanced SRCC patients with AI-predicted low-risk status may benefit substantially from adjuvant chemotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻问柳发布了新的文献求助10
1秒前
肚子圆圆的完成签到 ,获得积分10
1秒前
小二郎应助丁昆采纳,获得10
1秒前
XZY完成签到 ,获得积分10
2秒前
上帝发誓完成签到,获得积分10
3秒前
你浩哥发布了新的文献求助10
3秒前
3秒前
李健应助淡定的水彤采纳,获得10
4秒前
宁宁完成签到,获得积分10
5秒前
飞飞完成签到,获得积分10
6秒前
6秒前
8秒前
lakiliu完成签到,获得积分10
10秒前
10秒前
岁月流年发布了新的文献求助10
10秒前
小白一点点完成签到 ,获得积分10
11秒前
爱吃泡芙发布了新的文献求助10
12秒前
13秒前
董小李完成签到,获得积分10
14秒前
小巧冬易完成签到,获得积分10
14秒前
沐风发布了新的文献求助10
15秒前
15秒前
只影有你完成签到,获得积分10
15秒前
yet完成签到,获得积分20
16秒前
毛豆应助月月采纳,获得10
17秒前
18秒前
daisy发布了新的文献求助30
18秒前
852应助细腻问柳采纳,获得10
19秒前
科研通AI2S应助乐乐乐乐采纳,获得10
20秒前
yet发布了新的文献求助20
20秒前
yar应助科研通管家采纳,获得10
21秒前
21秒前
英姑应助科研通管家采纳,获得10
21秒前
yar应助科研通管家采纳,获得10
21秒前
Ganlou应助科研通管家采纳,获得10
21秒前
Raymond完成签到,获得积分0
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
垚乐应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312179
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521402
捐赠科研通 2620485
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115