Collective Behaviors of Magnetic Active Matter: Recent Progress toward Reconfigurable, Adaptive, and Multifunctional Swarming Micro/Nanorobots

活性物质 集体行为 生命系统 纳米技术 集体运动 群体行为 可重构性 计算机科学 物理 材料科学 生物 生态学 人类学 电信 细胞生物学 社会学
作者
Dongdong Jin,Li Zhang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (1): 98-109 被引量:62
标识
DOI:10.1021/acs.accounts.1c00619
摘要

Active matter refers to the nonequilibrium system composed of interacting units that continually dissipate energy at a single-unit level and transduce it into mechanical force or motion. Such systems are ubiquitous in nature and span most of the biological scales, ranging from cytoskeleton protein polymers at the molecular level to bacterial colonies at the cellular level to swarms of insects, flocks of birds, schools of fish, and even crowds of humans on the organismal scale. The consumption of energy within systems tends to induce the self-organization of active matter as well as the spontaneous emergence of dynamic, complex, and collective states with extraordinary properties, such as adaptability, reconfigurability, taxis, and so on. The research into active matter is expected to deepen the understanding of the underlying mechanisms of how the units in living systems interact with each other and regulate the flow of energy to improve the survival efficiency, which in turn can provide valuable insights into the engineering of artificial active systems with novel and practical collective functionalities.Because of the striking similarity in collective states, a colloidal system is an emerging approach to understanding the guiding principles of the coordinated activities in living systems. Thanks to the capabilities in batch fabrication, size control, and the modulation of interactions (e.g., dipole-dipole interactions, capillary forces, electrostatic interactions, and so on), various complex collective states have been reproduced and programmed in colloidal suspension through the elaborate design of compositions and unit-unit interactions. Among the developed colloidal systems, magnetic colloids energized by alternating magnetic fields demonstrate several unique advantages, including the high-degree-of-freedom and simple modulation of the magnetic field parameters as well as the excellent compatibility of the magnetic field with many application scenarios. Therefore, magnetic active matter not only constitutes a useful platform that leads to a discovery of fascinating emergent collective behaviors but also promises enormous potential in a variety of engineering fields.In this Account, we summarize and highlight the key efforts carried out by our group and others on the investigation of the collective behavior of magnetic active matter in the past 5 years. First, we elucidate the generation mechanisms of the emergent coordinated behaviors, which are classified according to the dominating interactions among agents, that is, the magnetic dipole-dipole interaction, hydrodynamic interaction, and weak interaction. Then we illustrate the construction of magnetic active matter with a higher level of collective effects and functionalities (e.g., reconfigurability, environmental adaptability, 3D swarming, cooperative multifunctionality, and so on) via the synergistic effects between magnetic fields and other fields. Next, potential applications of magnetic active matter are discussed, which mainly focus on the exploration in revolutionizing traditional biomedical fields. Finally, an outlook of future opportunities is presented to promote the development of magnetic active matter, which facilitates a better understanding of living counterparts and the further realization of practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎日新发布了新的文献求助10
1秒前
珏晴应助不想太多采纳,获得20
1秒前
东十八完成签到,获得积分10
1秒前
1秒前
兴奋的如松完成签到,获得积分20
2秒前
李大宝完成签到,获得积分10
3秒前
Friday发布了新的文献求助10
4秒前
NexusExplorer应助小5采纳,获得10
4秒前
浮光应助半颗糖采纳,获得50
6秒前
传奇3应助绿豆饼采纳,获得10
6秒前
李大宝发布了新的文献求助10
6秒前
烟花应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
JamesPei应助汤飞柏采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
8秒前
赫若魔应助科研通管家采纳,获得10
8秒前
8秒前
hhj完成签到 ,获得积分10
8秒前
mtt应助科研通管家采纳,获得20
8秒前
爱学习的不懂完成签到,获得积分10
8秒前
小明应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
10秒前
Unstoppable完成签到,获得积分10
11秒前
汉堡包应助邵大王采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934001
求助须知:如何正确求助?哪些是违规求助? 4202038
关于积分的说明 13055784
捐赠科研通 3976153
什么是DOI,文献DOI怎么找? 2178833
邀请新用户注册赠送积分活动 1195113
关于科研通互助平台的介绍 1106495